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Chapter 1

Introduction

Until quite recently, the Army (and many other customers for that matter) selected and contractually
mandated specific, statistical reliability test plans. With the advent of acquisition reform, the contractor
often selects or designs test plans and is encouraged to be innovative in doing so. For this reason,
sequential test plans, rarely used in recent years, have gained favor since they offer markedly reduced
test lengths compared with fixed-length plans. The design and analysis of sequential test plans is
computationally challenging. During the past year or so, urgent requirements arose on a number of
Army programs for timely analysis of proposed sequential test designs as well as for the design of new
or alternative plans. It became apparent that new methods, and the implementation of both new and
established methods in commercial mathematics software, was urgently needed. The purpose of this

report is to disseminate recent progress in this area.

This report documents the design and/or analysis of sequential test plans for four Army systems. The
first three case studies illustrate the application of these methods to reliability qualification testing.
Important benefits to each program were realized. The fourth case study illustrates a new, simulation-

based method for designing a hypergeometric test plan for acceptance of maintenance troubleshooting

procedures based on sequential sampling.

A key accomplishment included in this report concerns the exact-analysis method for exponential
sequential test designs. Previously, such exact-analysis methodology was, for all practical purposes,
restricted to the statistical research community. Indeed, little practical use was found for these methods
during the past forty years. It was possible to re-formulate and implement the exact-analysis method in
modern mathematics software in a form that, for the first time, can be routinely used by test planners. It
was deemed decisively advantageous to undertake this effort because of the resurgence of truncated

exponential sequential test designs, the properties of which are very difficult to obtain otherwise.

The test designs and analyses contained within this report constitute a basic set of electronic templates
for sequential test planning in the future. The electronic form of each chapter and appendix of this
report is a Mathematica 4 notebook. All of the methodology, computations and graphics in this report
are Mathematica executables. The results were generated and inserted by Mathematica. Thus the
technical content of this report is "live" in the sense that it can be re-executed as desired by readers

working with the electronic version (provided they have a copy of Mathematica 4). Please refer to The
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Mathematica Book [Wolfram 1999] for information on this software. Additional information, including

a free reader, is available at http://www.wolfram.com/.



Chapter 2

Analysis and Confirmation of a Proposed Exponential
Sequential Test Plan: Case Study 1

Introduction

An Army imaging system was to be subjected to a fixed-configuration reliability demonstration test. The
required Mean Time Between Failures (MTBF) was 503 hours and the consumer risk (i.e., the worst-
case risk of the Army accepting the system if the true MTBF is lower than 503 hours) was not to appre-

ciably exceed 20%. The contractor proposed the following exponential sequential test design:

» lower-test MTBF = 503 hours
» upper-test MTBF = 2*503 = 1006 hours
= consumer risk = producer risk = 20%

= decision rules given by the following table:

Failures Reject Time (hours) < Accept Time (hours) =
0 N/A 1395
1 N/A 2092
2 N/A 2789
3 697 3487
4 1395 4184
5 2092 4881
6 2789 5578
7 5578 N/A

The Army test planners and evaluators needed to quickly analyze the proposed test plan, verify that the
consumer risk met requirements and calculate the properties to include obtaining the operational-

characteristic and expected test time curves.

We analyzed the proposed decision rules using two methods and the results were compared. The rules

were first simulated and then an exact analysis was performed. The simulation functions and results are




provided in this chapter as are key results of the exact analysis. The exact-analysis details are provided

in Appendix A.

Simulation

The decision rules are simulated for two values of the true MTBF. The true MTBEF is first assumed to be
equal to the lower-test MTBF of 503 hours and is then assumed to be equal to the upper-test MTBF of
1,006 hours. Each simulation produces an approximate value for the acceptance probability, expected
quantity of failures and expected test time. This provides approximate values for the consumer and
producer risks since the former is defined as the acceptance probability if the true MTBF equals the
lower-test MTBF and the latter can be defined as one minus the acceptance probability when the true
MTBF equals the upper-test MTBF.

It should be noted that many of the executable cells in this chapter have been designated as initialization
cells. As a result, all of the simulations (except for the timing experiments) can be executed by directing

the kernel to evaluate the initialization cells.

Define and Plot the Decision Rules

First let's define and plot the proposed rules for arriving at accept and reject decisions. The rules for

arriving at an accept decision provided in the introduction of this chapter are (hours):
accept[0] = 1395;
accept[1l] = 2092;
accept[2] = 2789;
accept[3] = 3487;
accept[4] = 4184;
accept[5] = 4881;

accept[6] = 5578;

The rules for arriving at a reject decision provided are (hours):



reject[3] = 697;
reject[4] = 1395;
reject[5] = 2092;
reject[6] = 2789;

reject[7] = 5578;

Plotting the decision rules helps one visualize them. We will use the function Mult ipleListPlot

which is defined in the standard add-on package Graphics MultipleListPlot " . This package
must be loaded first.

Needs["Graphics 'MultipleListPlot "]

In order to make the decision rules conform to the syntax requirements of MultipleListPlot, we

will generate a list of time-failure pairs for first the accept rules and then the reject rules.

acceptpoints = Table[{accept[i], i}, {i, 0, 6}]

{{1395, 0}, {2092, 1}, {2789, 2},
{3487, 3}, {4184, 4}, {4881, 5}, {5578, 6}}

rejectpoints = Table[{reject[i], i}, {i, 3, 7}]

{{e97, 3}, {1395, 4}, {2092, 5}, {2789, 6}, {5578, 7}}

Now we can plot the rules using triangles for the accept points and boxes for the reject points.
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MultiplelListPlot[acceptpoints, rejectpoints,

SymbolShape -+ {PlotSymbol [Triangle, 5], PlotSymbol [Box, 3]},
SymbolStyle -+ {RGBColor[0, 1, 0], RGBColor[1l, 0, 0]}, Frame - True,
FramelLabel » {"test time, hours", "cumulative failures"},

GridLines - Automatic];
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Identification of the reject, continue and accept regions can be overlaid thus:

Show([%, Graphics[{Text["Reject", Scaled[{0.2, 0.8}]], Text["Continue",
Scaled[{0.4, 0.5}]], Text["Accept", Scaled[{0.7, 0.2}]1}11}:
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In this section we will define a function which simulates exponential sequential tests. Since the function

uses random-number generation defined in the standard add-on package Statistics Continuous -

2000 3000

4000

test time, hours

Distributions ", we must first load this package.
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Needs["Statistics ContinuousDistributions" "]

Now we define the new function ExponentialSequentialSimulation.

ExponentialSequentialSimulation [trueMTBF_? Positive,
acceptfun_ Symbol, rejfun_Symbol, trials Integer?Positive] :=
Module[{cumtermtime = 0, cumfail = 0, cumaccept =0, i, testtime},

Do[i =0; testtime = 0; While[reject[i] < testtime < accept[i-1],

testtime += Random [ExponentialDistribution[

117 i44]:
trueMTBF
If [testtime 2 accept[i - 1], cumtermtime += acceptfi-1];

cumfail += i - 1; cumaccept++, cumtermtime += testtime; cumfail +=i],

) . ) cumtermtime
{trlals}];{AverageTermlnatlonTime-9 -
trials
. . cumfail

AverageFailureQuantity - -

trials

. cumaccept

AverageAcceptFraction - - H

trials

ExponentialSequentialSimulation provides an approximate average for the fraction of tests
that result in an accept decision. The fraction of tests that result in a reject decision may be calculated by
subtracting this result from one. Exponential SequentialSimulation also provides average

values for the unconditional test-termination time and failure quantity.

It should be noted that a different approach to exponential sequential simulation is taken in Appendix B.
The approach taken in this chapter is more efficient in terms of execution time and memory usage, thus
it permits one to perform larger simulations. The approach taken in Appendix B is easier to setup and

saves more simulation data at the expense of additional execution time and memory.

It should also be noted that the function in the standard add-on package Statistics Continuous -
Distributions® for generating machine-precision, pseudorandom numbers from the exponential
distribution is used here but not in Appendix B. In Appendix B, arbitrary-precision pseudorandom
numbers are generated in order to obtain highly-accurate results as recommended by McCullough

(2000), the penalty for which is increased execution time.



» Identify and Define Additional Rules

In order for the simulation function ExponentialSequentialSimulation to run correctly, there
must be an appropriate accept and reject time at any potential quantity of failures that may be encoun-

tered during the simulation.

First let's consider the accept rules. An accept time is needed for the i - 1 failure where i ranges from 0
to the maximum quantity of failures allowed by the rules. The maximum quantity of failures allowed by
subject test plan is 7. A review of the accept rules already defined reveals that the only additional rule
we need is when 7 equals 0. This corresponds to a failure quantity of -1, a physically impossibility. This
is a computational precondition for the simulation to begin. An accept time of 1 for the failure quantity

of -1 will work for any test plan.
accept[-1] = 1;

An additional rule would have been needed if any accept rules were missing for failure quantities
greater than or equal to zero. There must be an accept time for any physically possible quantity of
failures. If there are accept rules missing, the next rule should be used. For example, if there's no failure-

free accept time, the failure-free and one-failure accept times should be equated.

Now let's consider the reject rules. A reject time is needed for the i th failure where i ranges from 0 to
the maximum quantity of failures allowed by the rules. The maximum quantity of failures allowed by
subject test plan is 7. A review of the reject rules already defined reveals that additional rules are needed
when i equals 0, 1 and 2. This is not unusual. With many exponential sequential test designs, there may

not be a way to reject with a small quantity of failures. It is computationally convenient to assign a time

of -1 for these cases.
reject[0] = -1;
reject[l] = -1;

reject[2] = -1;
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» Simulation Timing Experiment

It would be wise to determine how long a simulation will take with the accept and reject rules defined
herein. This will help us determine how large a simulation is practical on a given computer. We will use
a value midway between the Jower- and upper-test MTBFs as the assumed true MTBF. The simulation
execution time should increase linearly with the quantity of trials. First let's time a 10,000 trial simula-

tion.

Timing|[
ExponentialSequentialSimulation[1.5%503, accept, reject, 10000]]

{1 .93 Second, {AverageTerminationTime - 2753.86,

5393 }}

AverageFailureQuantity - —22—61
’ : Y 10000

625 ' AverageAcceptFraction —»

This took approximately 2 seconds on a computer with a 1.2 GHz Athalon processor and 128MB of
RAM. Let's try 100,000 trials next.

Timing [
ExponentialSequentialSimulation[1.5+ 503, accept, reject, 1000007 ]

{19. 12 Second, {AverageTerminationTime - 2751.59,

7274
2743 , AverageAcceptFraction - 53559 }}

AverageFailureQuantity - 20000 100000

This took approximately 20 seconds. A simulation of 1,000,000 trials should require approximately 200
seconds. Let's check.

Timing [
ExponentialSequentialSimulation[1.5+503, accept, reject, 1000000]]

{196 .46 Second, {AverageTerminationTime - 2753.95,

3651977 47
6519 » AverageAcceptFraction —» i3i—}}

AverageFailureQuantity - m 1000000

The execution time was as predicted.

» Simulation When True MTBF Equals Lower-Test MTBF

In this section we will run four simulations assuming that the true MTBF equals the lower-test MTBF of
503 hours. Each will simulate 1,000,000 exponential sequential tests using the rules defined earlier. The
results of the 1,000,000-trial simulations are assigned as the value of the symbols lowertestsiml,

lowertestsim2, lowertestsim3 and lowertestsimA.




N[lowertestsiml =
ExponentialSequentialSimulation[503, accept, reject, 1000000]]

{AverageTerminationTime - 2260. 46,

AverageFailureQuantity - 4.49458, AverageAcceptFraction - 0.190786}

N[lowertestsim2 =
ExponentialSequentialSimulation[503, accept, reject, 1000000]]

{AverageTerminationTime - 2261.22,

AverageFailureQuantity - 4.4934, AverageAcceptFraction - 0.191338)

N[lowertestsim3 =
ExponentialSequentialSimulation[503, accept, reject, 1000000]]

{AverageTerminationTime - 2262. 59,
AverageFailureQuantity - 4.4951, AverageAcceptFraction - 0.191233}
N[lowertestsim4 =
ExponentialSequentialSimulation[503, accept, reject, 1000000]]

{AverageTerminationTime - 2261. 58,
AverageFailureQuantity - 4.4966, AverageAcceptFraction - 0.190735)

The consumer-risk values, sorted from smallest to largest, are:

N[Sort[AverageAcceptFraction /.
{lowertestsiml, lowertestsim2 , lowertestsim3, lowertes tsimd}]]}

{0.190735, 0.190786, 0.191233, 0.191338}

With an average of:

Apply([Plus, %]
Length[%]

0.191023

This is close to the desired consumer risk of 20%.

The values for expected test time, sorted from smallest to largest, are:



N[Sort[AverageTerminationTime /.
{lowertestsiml, lowertestsim2, lowertestsim3, lowertestsimd}]]

{2260.46, 2261.22, 2261.58, 2262.59}

With an average of:

Apply[Plus, %]
Length[%]

2261.46

The values for quantity of failures, sorted from smallest to largest, are:

N[Sort[AverageFailureQuantity /.
{lowertestsiml, lowertestsim2, lowertestsim3, lowertestsimd}]]

{4.4934, 4.49458, 4.4951, 4.4966}

With an average of:

Apply[Plus, %]
Length[%]

4.49492

» Simulation When True MTBF Equals Upper-Test MTBF

In this section we will run four simulations assuming that the true MTBF equals the upper-test MTBF of

503*2 = 1,006 hours. Each will simulate 1,000,000 exponential sequential tests using the rules defined

earlier. The results of the 1,000,000-trial simulations are assigned as the value of the symbols

uppertestsiml, uppertestsim2, uppertestsim3 and uppertestsim4.

N[uppertestsiml =
ExponentialSequentialSimulation[1006, accept, reject, 1000000]]

{AverageTerminationTime - 2687.38,

AverageFailureQuantity - 2.67365, AverageAcceptFraction - 0.763462}
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N[uppertestsim? =
ExponentialSequentialSimulation[1006, accept, reject, 1000000]]

{AverageTerminationTime - 2688.54,

AverageFailureQuantity - 2.67251, AverageAcceptFraction - 0.764113)

N[uppertestsim3 =
ExponentialSequentialSimulation[1006, accept, reject, 1000000]]

{AverageTerminationTime - 2685.47,
AverageFailureQuantity - 2.67121, AverageAcceptFraction - 0.763396)
N[uppertestsim4 =

ExponentialSequentialSimulation[1006, accept, reject, 1000000]]

{AverageTerminationTime = 2686.77,
AverageFailureQuantity = 2.6692, AverageAcceptFraction - 0.764277}

The producer-risk values, sorted from smallest to largest, are:

N[Sort[1l - AverageAcceptFraction /.
{uppertestsiml, uppertestsim2?, uppertestsim3, uppertestsimd}] ]

{0.235723, 0.235887, 0.236538, 0.236604)

With an average of:

Apply[Plus, %]
Length[%]

0.236188

This is fairly close to the desired 20% producer risk. One should realize that it is not possible to design a
truncated, exponential sequential test that will provide exactly the consumer and producer risks desired.

(It's possible but quite difficult to do this in the untruncated case.)

The values for expected test time, sorted from smallest to largest, are:

N[Sort[AverageTerminationTime /.
{uppertestsiml, uppertestsim2, uppertestsim3, uppertestsimd}]]

{2685.47, 2686.77, 2687.38, 2688.54}



With an average of:

Apply[Plus, %]
Length[%]

2687.04

The values for quantity of failures, sorted from smallest to largest, are:

N[Sort[AverageFailureQuantity /.
{uppertestsiml, uppertestsim?2, uppertestsim3, uppertestsimd}]]

{2.6692, 2.67121, 2.67251, 2.67365}

With an average of:

Apply[Plus, %]
Length[%]

2.67164

Key Results from and Comparison with Exact Analysis

An exact analysis was performed and may be found in Appendix A. Key results are included in this

section for discussion and comparison.

The stage-by-stage acceptance, continuation and rejection probabilities assuming the true MTBF equals
the lower-test MTBF are:
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1tMTBFtable

Time I Accept Pr. 2 Continue Pr. 2 Reject Pr.

1. 697. 0. 0.83695 0.16305
2. 1395. 0.06245 0.60771 0.32984
3. 2092. 0.10578 0.43784 0.45638
4. 2789. 0.13583 0.31508 0.5491
5. 3487. 0.15705 0.22654 0.6164
6. 4184. 0.17223 0.10829 0.71948
7. 4881. 0.18313 0.0312% 0.78559
8. 5578. 0.19095 0. 0.80905

Each row in the table above sums to one as it should. The acceptance probability at the last stage (i.e.,
the consumer risk) is approximately 19.10%. This is in agreement with the consumer-risk value of
19.10% simulated earlier in this chapter. A larger simulation would provide agreement with the exact
analysis to additional decimal places, if desired. These results essentially validate the claim that this is a

20%-consumer risk test design.

The stage-by-stage acceptance, continuation and rejection probabilities assuming the true MTBF equals
the upper-test MTBF are:

utMTBFtable

Time X Accept Pr. Z Continue Pr. I Reject Pr.

1. 697. 0. 0.96672 0.03328
2. 1395. 0.2499 0.68401 0.06609
3. 2092. 0.42322 0.48587 0.09091
4. 2789. 0.54339 0.34754 0.10908
5. 3487. 0.62834 0.2494 0.12227
6. 4184. 0.68907 0.15185 0.15908
7. 4881. 0.73263 0.06257 0.2048
8. 5578. 0.76392 0. 0.23608

The rejection probability at the last stage (i.e.,the producer risk) is approximately 23.61%. This is very

close to the producer-risk value of 23.62% simulated earlier in this chapter. These results essentially
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validate the claim that this is a 20%-producer risk test design.

The expected quantity of failures plot as a function of true MTBF is:

Show[expectedfailures

Plot];

Exact-Rnalysis Curve
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The plot of expected quantity of test time as a function of true MTBF is:
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The expected test time if the true MTBF equals the lower-test MTBF is 2,261 hours which agrees with
the simulated value of 2,261. The expected test time if the true MTBF equals the upper-test MTBF is
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2,686 hours which agrees with the simulated value of 2,687.

The operational-characteristic curve (i.e., the acceptance probability as a function of true MTBF) from

appendix A is:

Show[ocPlot] ;

Exact Operational-Characteristic Curve

1 —

//——
0.8 ,
Q /
2
H0.6
e /
90.4
3]
0
<<

o
N

0 —/
0 500 1000 1500 2000 2500 3000
True MTBF, hours

The exact analysis was highly beneficial since it provided the operational-characteristic curve, an
important test-planning graph. Otherwise, simulations would have been needed at many more than two

points in order to characterize the curve.



Summary

This chapter contains simulations of the outcomes of exponential sequential tests which use a proposed
collection of exponential sequential decision rules. Two values of the true MTBF are considered. The
true MTBF is first assumed to be equal to the lower-test MTBF and then is assumed to be equal to the
upper-test MTBF. Based upon 4,000,000 trials, the consumer risk is approximately 19.1%. This is
consistent with the assertion that the plan was designed to provide a consumer risk of 20%. Based upon
4,000,000 trials, the producer risk is approximately 23.6%. This is consistent with the assertion that the
test plan was designed to provide a producer risk of 20%. This is as close as one can usually get when
designing truncated exponential sequential tests. Approximate values were also produced for the
expected quantity of failures and expected test time. In all cases, the simulation results are in close
agreement with the results of the exact analysis documented in appendix A. The test planners and
evaluators were advised that the proposed test plan was as advertised and were provided with the key

graphs and tables.

This chapter can serve as a template for the verification of truncated exponential sequential test plans.

Indeed, the author has already had occasion to do so many times.
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Chapter 3

Reliability Test Design Mistake that can Result in High
Consumer Risk: Case Study 2

Introduction

The case study in this chapter is based on a recent, contractor-proposed exponential sequential test
design that contained a critical, but not infrequent mistake. This chapter was prepared in order to clearly

illustrate this mistake and thereby help test designers avoid it in the future.

Test Design

Let's assume that the one-parameter exponential distribution satisfactorily models the time-to-failure of
a product. Let us further suppose that we need to design a test with a lower-test value for 6, the exponen-
tial distribution parameter, and a not-to-exceed value for consumer risk. We'll choose a lower-test 8 of
1480 hours and a consumer risk of 20% in order to work through a concrete example. This implies that
if our test is just barely passed, then our 1480 hour requirement will be demonstrated with at least 100 -
20 = 80% one-sided, statistical confidence. In order to design such a test plan, one might proceed as
suggested in [Kececioglu 1993, section 7.10]. We begin by calculating the length of a time-terminated
test that will result in the desired lower-confidence limit on @ if no failures occur. We need functions for
the y? distribution in order to proceed. Functions for the »? distribution are available in the standard

add-on package Statistics NormalDistribution® which we now load:

Needs["Statistics NormalDistribution™"]
We can implement [Kececiogiu 1993, equation 7.34] as follows:

@ Quantile [ChiSquareDistribution [2r + 2], conf]

chiSquareEqn = >

1
e InverseGammaRegularized[E (2+2r), 0, conf]
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where r is the quantity of failures and 100*conf is the desired, one-sided statistical confidence level. The
function Quantile is used in order to obtain percentage points for a distribution. Assuming that the

required 6 equals 1480 hours, then for the case where r equals 0 and conf equals 0.8 we have:

chiSquareEqn /. {6 » 1480, r » 0, conf - 0.8}

2381.97

We can continue this process and calculate the test times (rounded off to the closest integer) that corre-

spond to failure quantities up through five and table our results:

‘ TableForm[chiSquareTbl =
Table[{Round[chiSquareEqn /. {conf 0.8, 6 1480}], r}, {r, 0, 5}],
TableHeadings -» {None, {"Time", "Failures"}}]

Time Failures
2382 0
4432 1
6333 2
8162 3
9947 4
11701 5

Perhaps it would be correct to interpret the table above as a sequence of decision rules to use in a single

test plan as follows:

® accept at 2382 hours if 0 failures have occurred,

® accept at 4432 hours if 1 failure has occurred,

® accept at 6333 hours if 2 failures have occurred,

® accept at 8162 hours if 3 failures have occurred,

® accept at 9947 hours if 4 failures have occurred,

® accept at 11701 hours if 5 failures have occurred and

m reject if 6 failures occur before 11701 hours are accumulated.

Let's analyze these decision rules and determine whether they satisfy our consumer-risk requirement.



Exact Analysis

An exact method was developed by Epstein, Patterson and Qualls [1963] for analyzing a sequence of
decision rules such as the one obtained in the previous section. Regardless of how the rules were
obtained, they constitute an exponential sequential test plan. This section contains an analysis of the
exact stage-by-stage acceptance, continuation and rejection probabilities resulting from the sequence of
decision rules. Included are the important special cases that arise at the last stage: consumer risk and
operational-characteristic curve. Mathematica symbolics are used to obtain results with the parameter
held symbolic until a numerical value is supplied. The stage-by-stage calculations are performed in such
a way that numerical errors that would otherwise accumulate are entirely avoided. The results of all
calculations are "exact" but include occurrences of the exponential function. Numerical approximations

to any desired precision are provided as well.

Functions contained in the standard add-on package Statistics DiscreteDistributions"

are needed by this method which we load now:
Needs["Statistics ‘DiscreteDistributions® "1

Formulate Reliability Test Plan Decision Rules

In order to apply the exact-analysis method, we need to construct a list of accept points from these
decision rules. Each pair will be of the form {#;, i} where the first pair defines the zero-failure accept
time, the second pair defines the one-failure accept time, etc. Fortunately, chiSquareTbl is structured in
exactly this form so we will simply assign it as the value of accepr.

accept = chiSquareTbl

{{2382, 0}, {4432, 13}, {6333, 23}, {8162, 3}, {99247, 43, {11701, 5}}
We need to construct a list of reject points from these decision rules. Each pair will be of the form {7, 7}
where the first pair defines the shortest reject time and the corresponding quantity of failures, the second
defines the second-shortest reject time and the corresponding quantity of failures, etc. We can obtain a
list of reject points and assign them as the value of the reject as follows:

reject = chiSquareTbl /. {t_Integer, f _Integer} - {t, 6}

{{2382, 6}, {4432, 6}, {6333, 6}, {8162, 6}, {9947, 63}, {11701, 6}}
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It would be helpful to graphically depict the decision rules for this test design. We will need functions

contained in the standard add-on package Graphics ‘Mul tipleListPlot " which we load now:

Needs["Graphics 'MultipleListPlot" "

The decision rules are plotted as follows:

ListPlot[Join[accept, Reverse [reject]], PlotJoined » True,
PlotRange - {{0, 14000}, {0, 7.5}}, Frame » True,
FrameLabel -» {"test time, hours", "cumulative failures"}, GridLines o
Automatic, PlotStyle -+ {Thickness [0.005], RGBColor[0, 0, 1]}1;

T § I T

| ; !
7 - - i
i
!
:
i

(o))

w

[1=N

N W

i

cumulative failures

-
| |
et

2000 4000 6000 8000 10000 12000 14000
test time, hours

|

-

We've obtained a typical exponential sequential plot. Identification of the reject, continue and accept

regions can be overlaid thus:
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decisionPlot = Show([%,
Graphics[{Text["Reject", Scaled[{0.22, 0.90}]], Text{"Continue",

: Scaled[{0.5, 0.6}]], Text["Accept", Scaled[{0.75, 0.2}11}1]1:
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» Define Function for Stage Times

In this step, we will construct a stage-time function. First, a list is needed of the times for each stage.
The stage times are comprised of the accept and reject times joined into a single list and sorted from

shortest to longest. The list of stage times is constructed as follows:
timeValues =
Sort[Union[First[Transpose[accept]] P First[Transpose[reject] 11, Less)

{2382, 4432, 6333, 8162, 9947, 11701}

It should be noted that the times are expressed as exact numbers (i.e., either as integers or rational
numbers) in order to avoid approximations until after the stage-by-stage calculations are complete. If the
times are expressed in decimal form, Mathematica will treat them as approximate and will use machine-

precision (unless many zeroes are used).

It should also be noted that the function unj on was used to eliminate any repeats occurring as the two
lists were combined.

The quantity of stages is:

Length[timeValues]

6




A function which will provide time values as a function of stage, except for the special case of stage

zero, is:

t[stage Integer /; stage > 0] := timeValues [stage]
The initial condition for time [Epstein, et al. 1963, equation 16]:

t[i_ /;i==0]:=0

Construct Accept-Number Function

In this step, we will construct an accept-number function. First, we will generate an Interpolating-

Function object from accepr:

fA = Interpolation[accept, InterpolationOrder - 1]

InterpolatingFunction([{{2382, 11701} }, <>)

Now, we define a function which will provide an integer-valued accept number for each stage using

Epstein, et al. 1963, equation 11:
a[stage Integer /; stage > 0] :=-1/; t[stage] < First[First[accept]]

a[stage Integer /; stage > 0] := Floor[fA[t[stage]]]

A special case of the accept-number function is defined for the initial condition at stage zero [Epstein, et
al. 1963, equation 16]:

a[stage Integer /; stage == 0] := -1

Construct Reject-Number Function

In this step, we will construct a reject-number function. First, we will generate an Interpolating-

Function object from reject:

fR = Interpolation[reject, InterpolationOrder - 1]

InterpolatingFunction|[{{2382, 11701}}, <>]

Now, we define an function which will provide an integer-valued reject number for each stage using

Epstein, et al. 1963, equation 12:
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r[stage Integer /; stage > 0] :=Ceiling[fR[t[stage]]]

A special case of the reject-number function is defined for the initial condition at stage zero:

r[stage_ /; stage==0] :=1

m Tabulation of Accept, Continuation and Reject Points

In this step, we generate a table of accept, continuation and reject numbers. This is done to provide a

convenient stage-by-stage listing of the test plan to be analyzed. The table is generated as follows:

TableForm|[Transpose[{Range[Length[timeValues]],

Table[N[t[stage]], {stage, 1, Length[timeValues]}],
‘Table[a[stage], {stage, 1, Length[timeValues]}],
Append|[Table[a[stage] +1, {stage, 1, Length[timeValues] -1}], NA],
Append[Table[r[stage] -1, {stage, 1, Length[timeValues] -1}], NA],
Table[r[stage], {stage, 1, Length[timeValues]}]}],

TableHeadings -> {None, {"Stage", "Time", "Accept",

"Continue (min)", "Continue (max)", "Reject"}},
TableSpacing = {1, 1.5}, TableAlignments - Center]

Stage Time Accept Continue (min) Continue (max) Reject

1 2382. 0 1 5 6
2 4432, 1 2 5 6
3 6333. 2 3 5 6
4 8l62. 3 4 5 6
5 9947. 4 5 5 6
6 11701. 5 NA NA 6

s Construct Function for Acceptance/Continuation Probability for a Quantity of Failures

In this step, we construct a function for calculating acceptance/continuation probabilities for a quantity

of failures [Epstein, et al. 1963, equation 17]:

ACProbability[stage , failure , trueTheta ] /;
And{stage > 0, (a[stage-1] +1) < failure s r[stage] -1] :=
aclist[stage, failure, trueTheta]

ACProbability[stage , failure , trueTheta ] /:;
And[stage > 0, Not{(a[stage-1] +1) s failure < r[stage] -1]] :=0

Two initial conditions for this function are also needed [Epstein, et al. 1963, equation 16]:

37




ACProbability[0, 0, trueTheta ] :=

ACProbability[0, failure Integer /; failure >0, trueTheta ] :=

» Up-front Calculation of Acceptance/Continuation Probabilities

In order to reduce execution time, stage-by-stage calculations of acceptance and continuation probabili-

ties are developed in this step.

A function for building up the calculations is:

aclistfunction[stage Integer, failure Integer, trueTheta ] :=
aclist[stage, failure, trueTheta] =
failure
ACProbability[stage -1, j, trueTheta)
j=a[stage-1]+1
t[stage] - t[stage-1]

PDF[PoissonDistribution[
trueTheta

]+ failure- 3]
An indexed variable aclist is used to build up the acceptance and continuation probabilities.

The acceptance and continuation points for the stages are:
Map[aclistfunction[l, #, trueTheta] &,
Apply[Range, {a[i-1]+1, r[i] -1} /.i>1]]

-2382/trueTheta
{e-2382/trueTheta 2382 e a

4

trueTheta
2836962 e-2382/trueTheta 2252547828 e-2382/trueTheta

trueTheta’ ' trueTheta’
1341392231574 e-2382/trueTheta  37195196295609268 e-2382/trueTheta

trueTheta’ ! 5 trueTheta®

14

Map[aclistfunction[2, #, trueTheta] &,
Apply[Range, {a[i-1]+1, r[i] -1} /.i-2]]}

{ 2382 e-4432/trueTheta 7720062 e—4432/true'rheta 13073497428 e—4432/trueTheta

trueTheta ! trueTheta? ! trueTheta’
15340486306474 e 432/trueTheta  £97941890180605268 e-1432/trueTheta
trueTheta® ! 5 trueTheta5

’
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Map[aclistfunction[3, #, trueTheta] &,
Apply[Range, {a[i-1]+1, r[i] -1} /. i-3]]

{ 7720062 e~6333/trueTheta 27749335290 e-6333/trueTheta
trueTheta’ ! trueTheta®
54142588804933 e0333/trueTheta  377862055671928093 e 6333/trueTheta

trueTheta® ! 5 trueTheta®

4

Map[aclistfunction[4, #, trueTheta] &,
Apply[Range, {a[i-1]+1, r[i] -1} /. i 4]]

27749335290 e-8162/trueTheta
{ trueTheta®
104896123050343 e-8162/trueTheta  1705066565630177603 e 8162/trueTheta

trueTheta® ! 5 trueTheta’

14

Map[aclistfunction[5, #, trueTheta] &,
Apply[Range, {a[i-1]1+1, r[i] -1} /. i-5]]

{ 104896123050343 e 9947/trveTheta  5041264463854488878 e~2947/trueTheta
trueTheta® ! 5 trueTheta®

Maplaclistfunction[6, #, trueTheta] &,
Apply[Range, {a[i-1]+1, r[i]-1}/.i- 6]]

{ 2041264463854488878 e 11701/trueTheta
5 trueTheta®

n Construct Function for Acceptance Probability for a Quantity of Failures

In this step, we construct a function for calculating acceptance probabilities for a quantity of failures

[Epstein, et al. 1963, equation 18]:

AcceptanceProbability[stage Integer, failure Integer, trueTheta ] :=
ACProbability[stage, failure, trueTheta]

= Construct and Use Function for Acceptance Probability for Each Stage

In this step, we construct and use a function for calculating stage-by-stage acceptance probabilities

[Epstein, et al. 1963, equation 20]:




AcceptanceProbability[stage Integer, trueTheta ] :=
a[stage]
AcceptanceProbability[stage, failure, trueTheta] /;

failure=-a[stage-1]+1

a[stage - 1] < a[stage]

AcceptanceProbability[stage Integer, trueTheta ] :=
0 /; Not[a[stage - 1] < a[stage]]

The acceptance probability as a function of the true 8 is the sum of the probabilities of acceptance at

each stage. This is given by Epstein, et al. 1963, equation 14:

AcceptanceProbability[trueTheta ] :=

n
ZAcceptanceProbability [trueTheta , i_]

i=l

Cumulative Acceptance Probabilities for Each Stage When the True #is Symbolic

The cumulative acceptance probability for stage one when trueTheta is left symbolic is:

AcceptanceProbability[stage, trueTheta]
stage=1

e-2382 /trueTheta

The result above is exact but partially symbolic. An exact result can be obtained for a specific value of

trueTheta such as 1480 hours as follows:
% /. trueTheta - 1480

1
e1191/740

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]
0.1999956906413552797549
Requesting a numerical approximation greater than 16 decimal places forces Mathematica to perform

arbitrary-precision arithmetic rather than rely upon the math co-processor. If the math co-processor is

used, Mathematica can't guarantee the result. The additional execution time required is negligible for
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the calculations in this chapter.

The cumulative acceptance probability for stage two when trueTheta is left symbolic is:

AcceptanceProbability[stage, trueTheta]
stage=1

2382 e-4432/trueTheta

e—2382/true’l‘heta ¥
trueTheta

The result above is exact but partially symbolic. An exact result can be obtained for a specific value of

trueTheta such as 1480 hours as follows:

% /. trueTheta —» 1480

1191 1
740 ©554/185 © l181/740

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.2805602681208591005752

The cumulative acceptance probability for stage six, the final stage, when frueTheta is left symbolic will

be generated. This is also known as the operational-characteristic function.

OCfunction = Z AcceptanceProbability[stage, trueTheta]
stage=1

-2382/trueTheta , 2041264463854488878 @~11701/trueTheta
S trueTheta®
104896123050343 e9%47/trueTheta »974933529( e 8162/trueTheta
+

trueTheta’ trueTheta’
7720062 e—6333/trueTheta . 2382 e-4432/trueTheta

e

+

+

trueTheta’ trueTheta

OCfunction provides the exact acceptance probability as a function of rueTheta. The exact operational-

characteristic curve can now be plotted:



Plot[OCfunction, {trueTheta, 100, 5000}, GridLines - Automatic,
Frame » True, FramelLabel -» {"True 6, hours", "Accept Prob.",
"Exact Operational-Characteristic Curve" , None},
PlotStyle » RGBColor([0, 0, 1]];

Exact Operational-Characteristic Curve
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Cumulative Acceplance Probabilities for Each Stage When the True 6 Equals 1480 Hours

It would be useful to generate a list of cumulative acceptance probabilities for all six stages. The parame-
ter trueTheta will be left symbolic in order to be consistent with up-front calculations. The desired list is
generated but display of the output is temporarily suppressed.

mycumace = Table [

stagelim
AcceptanceProbability[stage, trueTheta], {stagelim, 1, 6}] ;
stage=1

Now a table is generated which displays our calculations. A rule is used to replace trueTheta with 1480

hours in the cumulative acceptance probabilities stored in the list mycumacc:
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NumberForm [
TableForm[{N[timeValues, 4], N{mycumacc /. trueTheta - 1480, 4]},
TableDirections -> {Row, Column},
TableHeadings ~> {{"Time", "2 Accept Pr."}, Automatic},
TableAlignments -> Center], {6, 5}]

Time Z Accept Pr.

1. 2382. 0.2

2. 4432. 0.28056
3. 6333. 0.32939
4. 8le2. 0.36386
5. 9947. 0.39021
6. 11701. 0.4114

We can observe that the probability of acceptance is 20% at the first stage and accumulates ultimately to
approximately 41%.

In order to calculate just the final cumulative acceptance probability, we can use OCfunction from the

previous section and employ a rule to replace trueTheta with 1480 hours.

OCfunction /. trueTheta ~» 1480

1020632231927244439 . 104896123050343 N
17752052992000000 !1701/1480 © 4797852160000 €9947/1480
2774933529 3860031 11901 1

324179200 €20817740 © 1005500 €6333/1480 ' 720 5547185 ' “@iio1/740
This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.4114009662053622390212

This is the consumer risk since the consumer risk is defined as the acceptance probability when the true

0 equals the lower-test 6.

= Construct Function for Continuation Probability for a Quantity of Failures

In this step, we construct a function for calculating continuation probabilities for a quantity of failures
[Epstein, et al. 1963, equation 19]:
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ContinuationProbability[stage Integer, f ailure Integer, trueTheta ] :=
ACProbability[stage, failure, trueTheta]
» Construct and Use Function for Continuation Probability for Each Stage

In this step, we construct and use a function for calculating stage-by-stage continuation probabilities

[Epstein, et al. 1963, equation 21]:

ContinuationProbability[stage Integer, trueTheta ] :=
r[stage] -1

ContinuationProbability[stage, failure, trueTheta] /;
failure=a[stage]+1

a[stage] +1 < r[stage]

ContinuationProbability[stage__Integer, trueTheta ] :=
0 /; Not[a[stage] +1 < r[stage]]

The continuation probability for stage zero with zero failures is, by definition, one:

ContinuationProbability[0, trueTheta]

1

Cumulative Continuation Probabilities for Each Stage When the True &is Symbolic

The cumulative continuation probability for stage one when trueTheta is left symbolic is:

ContinuationProbability[l, trueTheta]

3195196295609268 e~2382/trueThets , 1341392231574 e-?362/trueTheta

+

5 trueTheta” trueTheta®
2252547828 e 23%2/rueThets | 836962 e 2302/trueThets p3g) g-2382/trueTheta
trueTheta® trueTheta? trueTheta

This is an exact symbolic result. An exact result for the case where trueTheta is 1480 hours is:

% /. trueTheta -» 1480

35229506356658217
8876026496000000 e1191/740

This is an exact result. An numerical approximation accurate to 22 decimal places is:



N[%, 22]

k4

0.7937954509181623006374

W

The cumulative continuation probability for stage two when trueTheta is left symbolic is:

ContinuationProbability[2, trueTheta]

69741890180605268 e *432/trueThets | 15340486306474 e-*432/trueThera

+
5 trueTheta’ trueTheta®
13073497428 e—4432/trueTheta 7720062 e-4432/trueTheta
+
trueTheta3 trueTheta2

This is an exact symbolic result. An exact result for the case where trueTheta is 1480 hours is:

% /. trueTheta - 1480

112894152208872217
8876026496000000 e554/185

This is an exact result. An numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.6366737562654589956167
The cumulative continuation probability for stage six when trueTheta is symbolic is:

ContinuationProbability[6, trueTheta]

This is clearly correct since the continuation probability at the last stage must be zero.

Cumulative Continuation Probabilities for Each Stage When the True £ Equals 1480 Hours

. The cumulative continuation probability for stage one when trueTheta equals 1480 hours is:

ContinuationProbability[l, trueTheta] /. trueTheta -» 1480

35229506356658217
8876026496000000 e1191/740

This is an exact result. An numerical approximation accurate to 22 decimal places is:




N[%, 22]

0.7937954509181623006374

1t would be useful to generate a list of cumulative continuation probabilities for all six stages. The
parameter trueTheta will be left symbolic in order to be consistent with up-front calculations. The

desired list is generated but display of the output is temporarily suppressed.

mycumcon =
Table{ContinuationProbability[stage, trueTheta], {stage, 1, 6}];

Now a table is generated which displays our calculations. A rule is used to replace trueTheta with 1480
hours in the cumulative continuation probabilities stored in the list mycumcon. The cumulative accep-

tance probabilities for the case where the true 6 equals 1480 hours are also provided for reference.

NumberForm [
TableForm|[ {N[timeValues, 4], N{mycumacc /. trueTheta -» 1480, 4},
N[mycumcon /. trueTheta -+ 1480, 4]},
TableDirections -» {Row, Column}, TableHeadings ->
{{"Time", "2 Accept Pr.", "2 Continue Pr."}, Automatic},
TableAlignments -> Center], {6, 5}]

Time Z Accept Pr. Z Continue Pr.

1. 2382. 0.2 0.7938
2. 4432. 0.28056 0.63667
3. 6333. 0.32939 0.42243
4. 81e62. 0.36386 0.21336
5. 9947. 0.39021 0.0693
6. 11701. 0.4114 0.

» Calculate Rejection Probability for Each Stage

In this step, we calculate stage-by-stage rejection probabilities using Epstein, et al. 1963, equation 22:

(ContinuationProbability[stage - 1, trueTheta] -
stage=1

ContinuationProbability[stage, trueTheta] -
AcceptanceProbability[stage, trueTheta])
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Cumulative Rejection Probabilities for Each Stage When the True #is Symbolic

The cumulative rejection probability for stage one when trueTheta is left symbolic is:

(ContinuationProbability[stage - 1, trueTheta] -
stage=1
ContinuationProbability[stage, trueTheta] -
AcceptanceProbability[stage, trueThetal)

_ o-2382/truetheta _ 3195196295609268 e-2%2/truethecs
5 trueTheta’
1341392231574 e ?382/trueThete 9957547828 e 2382/trueTheta

trueTheta’ trueTheta®
2836962 e—2382 /trueTheta 2382 e—2382/trueTheta

1

trueTheta® trueTheta

This is an exact, but partially symbolic result. An exact result can be obtained for a specific value of

trueTheta such as 1480 hours is as follows:

% /. trueTheta -» 1480

44105532852658217

1~ $876026496000000 €1191/7%0

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.006208858440482419607709

Next, the cumulative rejection probability for stage six when trueTheta is symbolic will be generated.

This is one minus the operational-characteristic function.



rejfunction = Z (ContinuationProbability[stage - 1, trueTheta] -
stage=1

ContinuationProbability[stage, trueTheta] -
AcceptanceProbability[stage, trueTheta])

1 - e-2382/trueTheta _ 2041264463854488878 e~11701/trueTheta

5 trueTheta”
104896123050343 e-?%¢7/trueTheta  3974933529( e-0162/trueTheta

trueTheta® trueTheta’
7720062 e—6333/true’rheta 2382 e-4432/trueTheta

trueTheta? trueTheta

rejfunction provides the exact rejection probability as a function of trueTheta. This function can now be
plotted:

Plot[rejfunction, {trueTheta, 100, 5000}, GridLines -» Automatic,
Frame -» True, FrameLabel - {"True 6, hours", "Reject Prob.",

"Exact-Analysis Curve" , None}, PlotStyle - RGBColor[0, 0, 1]];
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Cumulative Rejection Probabilities for Each Stage When the True 8 Equals 1480 Hours

It would be useful to generate a list of cumulative rejection probabilities for all six stages. The parameter
trueTheta will be left symbolic in order to be consistent with up-front calculations. The desired list is

generated but display of the output is temporarily suppressed.
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stagelim
mycumrej = Table[ Z (ContinuationProbability[stage ~ 1, trueTheta] ~
stage=1

ContinuationProbability[stage, trueTheta] -
AcceptanceProbability[stage, trueTheta]), {stagelim, 1, 6}];

Now a table is generated which displays our calculations. A rule is used to replace trueTheta with 1480
hours in the cumulative rejection probabilities stored in the list mycumrej. The cumulative acceptance
and continuation probabilities for the case where the true 6 equals 1480 hours are also provided for

reference.

NumberForm [
TableForm[{N[timeValues, 4], N[mycumacc /. trueTheta -» 1480, 4], N|
mycumcon /. trueTheta -» 1480, 4], N[mycumrej /. trueTheta -» 1480, 4]},
TableDirections -> {Row, Column}, TableHeadings ->
{{"Time", "X Accept Pr.", "X Continue Pr."”, "E Reject Pr."},
Automatic}, TableAlignments -> Center], {6, 5}]

Time % Accept Pr. Z Continue Pr. X Reject Pr.

1. 2382, 0.2 0.7938 0.00621
2. 4432. 0.28056 0.63667 0.08277
3. 6333. 0.32939 0.42243 0.24818
4. 8162. 0.36386 0.21336 0.42278
5. 9947. 0.39021 0.0693 0.54048
6. 11701. 0.4114 0. 0.5886

Each row in the table above sums to one as it should. In order to calculate just the final cumulative
rejection probability, we can use the rejfunction from the previous section and employ a rule to replace

trueTheta with 1480 hours.

rejfunction /. trueTheta - 1480

1- 1020632231927244439 _ 104896123050343 B
17752052992000000 e11701/1480 4797852160000 e947/1480
2774933529 3860031 1191 1

324179200 e4081/740 1095200 ©6333/1480 - 740 e554/185 B e1191/740

This is an exact result. A numerical approximation accurate to 22 decimal places is:
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N[%, 22]

0.5885990337946377609788

The consumer risk equals one minus the rejection probability when the true 8 equals the required 8. This

is one minus the answer above:

1-%

0.4114009662053622390212

It would also be helpful to overlay the accept and reject probabilities on the decision-rule plot generated
earlier for the case where the true 6 equals 1480 hours. First a graphics object will be generated but

temporarily suppressed for the accept points. The accept points will be represented by triangles.

acceptProbPtsPlot = MultipleListPlot[Table[{N [t[stage]], a[stage]},
{stage, 1, Length[timeValues]}], SymbolShape ->
PlotSymbol [Triangle, 5], SymbolStyle » RGBColor [0, 0, 0], SymbolLabel -
{Map [NumberForm[#, 2] &, N[mycumacc /. trueTheta - 1480]], None},
PlotRange - {{0, 14000}, {0, 6.8}}, Frame - True,
FrameLabel - {"test time, hours", "cumulative failures"},
GridLines - Automatic, DisplayFunction - Identity];

Next a graphics object will be generated but temporarily suppressed for the reject points. The reject
points will be represented by boxes.

rejectProbPtsPlot = MultipleListPlot[Table[{N[t[stage]], r[stagel},
{stage, 1, Length[timeValues]}], SymbolShape ->
PlotSymbol [Box, 3], SymbolStyle - RGBColor[0, 0, 0], SymbolLabel -
{Map [NumberForm[#, 2} &, N[mycumrej /. trueTheta - 1480]), None},
PlotRange -» {{0, 14000}, {0, 6.8}}, Frame - True,
FrameLabel » {"test time, hours", "cumulative failures"},
GridLines - Automatic, DisplayFunction - Identity];

Now we will display the accept and reject points overlaid on the decision-rule plot.

3-20



Show[decisionPlot, acceptProbPtsPlot, rejectProbPtsPlot,
PlotRange - {{0, 14000}, {0, 8}}, DisplayFunction - $DisplayFunction];
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= Calculate Expected Quantity of Failures and Test Time

We need to define a function for the probability that the test will terminate with an accept decision at a
specified number of failures [Epstein, et al. 1963, equation 33]. First the general case and then the

special case:

AccProbabilityF[failure Integer, trueTheta ] :=
Module[{stage = 1}, While[failure > a[stage], stage++]; Which([
failure > Last[Last[accept]], 0, 0 < failure < Last[Last[accept]],
AcceptanceProbability[stage, failure, trueThetal]]] /;
failure s a[Length[timeValues]]

AccProbabilityF[failure Integer, trueTheta ] :=
0 /; failure > a[Length[timeValues]]

Now, we will define a function for the probability that the test will terminate with a reject decision at a
specified number of failures [Epstein, et al. 1963 equation 34]:
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RejProbabilityF[failure Integer, trueTheta ] :=
Module[{rejectlist}, rejectlist =
Select[Table[{stage, r[stage]}, {stage, 1, Length[timeValues]}],
#[2] == failure &] /. {st_Integer, rej_Integer} - st;
Which[Length[rejectlist] == 0, 0, Length[rejectlist] > 0,

Sum|[ (ContinuationProbability[stage -1, trueTheta] -
ContinuationProbability[stage, trueTheta] -
AcceptanceProbability[stage, trueTheta]),

{stage, First[rejectlist], Last[rejectlist]}]]]

The probability that the test will terminate with zero failures and a reject decision is:

RejProbabilityF[0, trueTheta]

This is obviously correct since the only path to rejection is if six failures occurs. The probability that the

test will terminate with one failure through five failures and a reject decision is:

RejProbabilityF[1l, trueTheta]

0

RejProbabilityF[2, trueTheta]

0

RejProbabilityF[3, trueTheta]

RejProbabilityF[4, trueTheta]

RejProbabilityF[5, trueTheta]

The probability that the test will terminate with six failures and a reject decision is:
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RejProbabilityF[6, trueTheta]

| _ e-2302/truemneta _ 2041264463854488878 @11701/trueTheta
5 trueTheta’
104896123050343 e-9947/trueTheta  5974933529( e-8162/trueTheta

trueTheta® trueTheta’
7720062 e 6333/trueTheta 2382 e-1432/trueThets

w

trueTheta2 trueTheta

If trueTheta is equal to 1480 hours, the probability that the test will terminate with six failures and a

reject decision is:

% /. trueTheta - 1480

1- 1020632231927244439 _ 104896123050343 _
17752052992000000 e11701/1460 4797852160000 e9947/1480
2774933529 3860031 1191 1

324179200 €4081/740 1095200 e6333/1480 - 740 e554/185 - e1191/740

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.5885990337946377609788

Now, we will define a function for the probability that the test will terminate in either acceptance or

rejection with a specified number of failures [Epstein, et al. 1963 equation 35]:

TerminateProbability[failure Integer, trueTheta ] :=
AccProbabilityF[failure, trueTheta] +
RejProbabilityF[failure, trueTheta]

The probability that the test will terminate with zero failures is:

TerminateProbability[0, trueTheta]

e—2382/trueTheta

The probability that the test will terminate with one failure is:

TerminateProbability[l, trueTheta]

2382 e-4 432/trueTheta

trueTheta
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The probability that the test will terminate with between zero and six failures is:

TerminateProbability[failure, trueTheta]
failure=0

This result is obviously correct since it's not possible for the test to continue beyond the sixth failure.

Next, we will define a function for the expected termination failure quantity [Epstein, et al. 1963

equation 36]:

ExpectedTerminationFailure [trueTheta ] :=
r[Length[timeValues] ]

failure TerminateProbability[failure, trueTheta]
failure=0

A function for the expected termination failure quantity with frueTheta left symbolic is:

expectedfailurefunction = ExpectedTerminationFailure[trueTheta]

6 (1 - e-2392/trueTheta _ 2041264463854488878 e 11701/trueTheta _

5 trueTheta’
104896123050343 e %*7/truetheta  5974933529( e-8162/trueTheta

trueTheta’ trueTheta®
7720062 e-6333/true'1‘heta 2382 9-4432/trueTheta

trueTheta?’ - trueTheta
2041264463854488878 e 11701/trueThets , 419584492201372 e %%47/trueTheta ,
trueTheta® trueTheta®
83248005870 e—BlGZ/trueTheta
+
trueTheta®

15440124 e-6333/trueTheta 2382 e-4432/trueTheta
+

trueTheta? trueTheta

Now we can plot this function:
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Plot[expectedfailurefunction,
{trueTheta, 100, 5000}, GridlLines - Automatic, Frame - True,
Framelabel -» {"True @&, hours", "Exp. Failure Quantity",
"Exact-Analysis Curve" , None}, PlotStyle - RGBColor[0, 0, 1]];

Exact-Analysis Curve
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In order to calculate the expected failure quantity for a true 6 of 1480 hours, we could use expectedfail-

urefunction and a rule to replace trueTheta with 1480.

expectedfailurefunction /. trueTheta -» 1480

6 ( _ 1020632231927244439 104896123050343

17752052992000000 e11701/1480 ~ 4797852160000 €%347/1480 ~
2774933529 3860031 1191 1 )+

324179200 e4081/740 1095200 ©6333/1480 - 740 e554/185 - e1191/740
1020632231927244439 + 104896123050343
3550410598400000 1170171480 1199463040000 €9947/1480
8324800587 3860031 1191
324179200 e4081/740 + 547600 ©6333/1480 + 740 ©554/185

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

4.024572455177141012839

Next, we will define a function for the expected test time [Epstein, et al. 1963 equation 41]:
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ExpectedTestTime[trueTheta ] :=
trueTheta ExpectedTerminationFailure[trueTheta]

A function for the expected test time with trueTheta left symbolic is:

expectedtesttimefunction = ExpectedTestTime[trueTheta]

[6 (1 _ -2382/truethets _ 2041264463854488878 e 11701/ truetheta
5 trueTheta’
104896123050343 e~9%47/trueTheta 27749335290 e-8162/trueTheta

trueTheta® trueTheta’
7720062 e-6333/trueTheta 2382 e_4 432/trueTheta
- +

trueTheta? trueTheta
2041264463854488878 e 11701/trueTheta , 419584492201372 e7%947/trucTheta ,
trueTheta” trueTheta®
83248005870 e-BlGZ/trueTheta 15440124 e-6333/trueTheta
+ +
trueTheta® trueTheta’
2382 e—4432/trueTheta
trueTheta trueTheta

Now we can plot this function:

Plot[expectedtesttimefunction,
{trueTheta, 100, 5000}, GridLines - Automatic, Frame - True,
FrameLabel -» {"True 6, hours", "Exp. Test Time, hours",
"Exact-Analysis Curve" , None}, PlotStyle - RGBColor[0, 0, 1]];

Exact-Analysis Curve
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In order to calculate the expected test time for a true 8 of 1480 hours, we could use expectedtesttimefunc-

tion and a rule to replace trueTheta with 1480.
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expectedtesttimefunction /. trueTheta - 1480

27244 4
1480 (6 (1“ 1020632231927244439 . 104896123050343

17752052992000000 €11701/1480 ~ 4797852160000 €9947/1480 ~

2774933529 3860031 1191 1

324179200 €4081/740 ~ 1095200 €6333/1480 740 e554/185 ~ @l191/740
1020632231927244439 . 104896123050343
3550410598400000 e11701/1480 © 1199463040000 €9947/2480
8324800587 3860031 1191
324179200 €4081/740 T 547600 €6333/1480 T 720 9554/185)

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

5956.367233662168699002
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Summary & Conclusions

An analysis of the exact stage-by-stage acceptance, continuation and rejection probabilities, including
the impact of truncation, resulting from a sequence of reliability test plan decision rules was performed.
An exact operational-characteristic function was obtained and plotted. Exact functions for expected

failure quantity and test time were obtained and plotted as well.

The probability of accepting a product with a true 8 or MTBF equal to the lower-test value of 1480 hours
at the first stage is 20%. If acceptance does not occur at the first stage, there is a possibility of accep-
tance at each subsequent stage except the last. The total probability of accepting such a product (i.e., the
consumer risk) is the sum of the acceptance probabilities at each stage. The consumer risk was found to

be 41.1%, approximately twice the desired 20% value.

The sequence of decision rules analyzed herein was also simulated for 400,000 trials in Appendix B.
The results of the simulated tests are consistent with the results obtained in this notebook and thus

constitute a rough double-check of the exact analysis.

The interpretation of the procedure from [Kececioglu 1993, section 7.10] considered herein is thus
rejected. As a result, a contractor-proposed test plan that contained this serious error was rejected. This
chapter illustrates this mistake and its impact in the hope this may help test designers avoid it in the
future.

It should also be noted that Butler and Lieberman (1980) recognized that a plan developed as described
in the beginning of this chapter would have a total consumer risk roughly twice the consumer risk at the
first accept point, as we saw. They developed a method for designing a sequential test plan containing
multiple acceptance points and a single, final reject point that has a more desirable level of consumer

risk.

3-28



Chapter 4

Design & Analysis of a Truncated Exponential Sequential
Test: Case Study 3

Introduction

Test planners were considering various options for a reliability demonstration test on a tactical terminal.
It was requested that AMSAA develop a truncated exponential sequential test plan that would meet the

following requirements:

» lower-test MTBF = 2200 hours
» upper-test MTBF = 4400 hours

= consumer-risk goal = producer-risk goal =20%

Sequential test designs can often reduce test time by a factor of two compared with fixed-length designs
thus they are highly beneficial to use when practical.

This chapter documents the design of a truncated exponential sequential test design that approximately
meets the requirements above. The impact of the truncation can only be determined through subsequent
analysis of the test design. For this reason, an exact analysis was performed and may be found in
Appendix C. Key results of the exact analysis, including stage-by-stage acceptance, continuation and
rejection probabilities, actual consumer and producer risks and operational-characteristic curve, are
included in this chapter. The exact analysis was checked with a simulation which is not included in this

report due to considerations of report length.

Define Requirements

o Lower-test MTBF = 2200 hours. We'll assign this as the value of the symbol lowertest since it will be

used numerous times in this example.

lowertest = 2200

2200
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¢ Upper-test MTBF = 4400 hours. We'll assign this as the value of the symbol uppertest.

uppertest = 4400

4400

e Consumer risk = 20%. We'll assign this as the value of the symbol conrisk. First we'll convert 20% to
an exact rational number. If we specify any input as a Real number, Mathematica will use finite-
precision arithmetic for each calculation. Errors will propagate and grow with each successive calcula-
tion. In order to avoid inaccuracies in statistical analyses, McCullough [2000] recommends that Real
inputs be converted to Rationals. If we convert Reals to Rationals, exact arithmetic will be used (i.e., no
approximations or roundoffs will occur). Mathematica will provide approximate numerical results only

when the user insists.
conrisk = Rationalize[.2]}
1
5
® Producer risk = 20%. We'll assign this as the value of the symbol prodrisk.

prodrisk = Rationalize{.2]

1
5

Setup

The code to be used in this chapter is contained in the new package ExponentialSequentialTestDesign.m
(Appendix D) and the standard add-on packages MultipleListPlot.m and DiscreteDistributions.m, These

packages are loaded thus:
Needs["Statistics 'DiscreteDistributions™ "]
Needs["Graphics 'MultipleListPlot "]

Needs["Reliability ExponentialSequentialTestDesign "]

The version of ExponentialSequentialTestDesign.m used in this test design is determined next.



? ExponentialSequentialTestDesign

ExponentialSequentialTestDesign.m (version 0.8.0) is a
package which contains a collection of functions useful for
sequential test design based on the Exponential distribution.

Accept Function

First, we need an accept function. The accept function provides cumulative failures for acceptaﬂce as a
function of cumulative test time, given values for lower-test MTBF, consumer risk, upper-test MTBF
and producer risk. The new function ExponentialAccept implements the accept equation derived
by Epstein and Sobel (1955). Providing the values in this case as arguments to ExponentialAccept

and leaving the argument time symbolic yields:

acceptfun =
ExponentialAccept[lowertest, conrisk, uppertest, prodrisk, time]

time Log[4]

4400 Log[2] Log[2]

This is the function for the non-truncated segment of the accept line. One use of the accept function is to
calculate the minimum test length for an accept decision to be reached (i.e., the quantity of time that, if
reached before a single failure occurs, triggers an accept decision). Acceptance occurs between failures
if the accumulated test time meets or exceeds the corresponding value given by the accept function. The
shortest path to acceptance can be determined by setting the quantity of failures equal to zero and

solving for time.

Solvelacceptfun =0, time] // N

{{time - 6099.7}}

Thus, the shortest path to an accept decision is when no failures have occurred and the accumulated test
time = 6099.7 hours.
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Reject Function

Next, we need a function for the non-truncated segment of the reject line. The reject function provides
cumulative failures for rejection as a function of cumulative test time, given values for lower-test MTBF,
consumer risk, upper-test MTBF and producer risk. The Wald intercept, an approximation, will be used
for this line.The new function ExponentialReject implements the reject equation derived by
Epstein and Sobel (1955). Providing the values of the arguments in this example to ExponentialRe-

ject, leaving the argument rime symbolic and setting the option Constant AMethod —Wald yields:
rejectfun = ExponentialReject[lowertest, conrisk,
uppertest, prodrisk, time, ConstantAMethod - Wald]

time R Log[4]
4400 Log[2] Log[2]

This is the function for the non-truncated segment of the reject line. One use of the reject function is to
calculate the minimum test length for a reject decision to be reached. A rejection decision is triggered by
the occurrence of a failure. When a failure occurs, if the accumulated test time is less than or equal to
the corresponding value given by the reject function, rejection occurs. The shortest path to failure is the
smallest quantity of failures which results in a positive rejection time. This can be determined by setting

the quantity of failures equal to zero and solving for time.

Solve[rejectfun == 0, time] // N

{{time » -6099.7}}
The quantity of time corresponding to zero failures is negative which is not a physically meaningful
answer. We will increment the failure quantity and repeat this calculation until we first obtain a positive
quantity of time:

Solve[rejectfun = 3, time] // N

{{time - 3049.85}}

The shortest path to rejection occurs if the third failure occurs and the accumulated test time < 3049.85

hours.



Truncation

Next, we'll address the truncation rules. First we'll calculate the truncated-reject criterion using the
Epstein [1954] truncation method which is implemented by the new function ExponentialTrunca-

tionFailures. We'll assign the result as the value of the symbol failtrunc:

failtrunc =
ExponentialTruncationFailures[lowertest, conrisk, uppertest, prodrisk]

Now, we'll calculate the corresponding Epstein truncated-accept criterion timetrunc by using the new
function ExponentialTruncationTime with the upper-test MTBF = uppertest, producer risk =
prodrisk and failures = failtrunc. We'll do this so as to avoid excess test time. In general, when the
accept time for the (failtrunc - 1) failure is less than the value of timetrunc, excess test time exists (i.e.,
test time which it would be impossible to reach). This quantity of excess test time is misleading and it is
desirable to remove it. In order to avoid erroneous test time, we first calculate the accept time for the

(failtrunc - 1) failure and assign the result as the value of oneminusaccepttime:

N[oneminusaccepttime =
First[time /. Solvel[acceptfun == failtrunc -1, timel]]]

24398.8

Next we calculate the Epstein truncation time and assign the result as the value of epsteintimetrunc:

N[epsteintimetrunc =
ExponentialTruncationTime[uppertest, prodrisk, failtrunc]]

20828.1

If oneminusaccepitime is less than epsteintimetrunc, we will assign oneminusaccepttime as the value of

timetrunc. Otherwise, we will assign epsteintimetrunc as the value of timetrunc:

If [oneminusaccepttime < epsteintimetrunc,
timetrunc = oneminusaccepttime, timetrunc = epsteintimetrunc] // N

20828.1
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Determine Domain of Functions and Generate Decision-Rule Plot

Now we are almost ready to plot the test plan. We will generate, but temporarily suppress, a graphics
object for each of the four straight lines needed on the final plot (i.e., non-truncated accept, non-trun-
cated reject, truncated accept and truncated reject). Then we will plot the graphics objects together. It
may be helpful to refer to the plot at the end of this example as we proceed.

First, let's generate a graphics object for the non-truncated segment of the accept line using the Expo-
nentialAccept function. We will limit the independent variable time to the domain of zero and
timetrunc (where the truncated segment of the accept line begins) and we will use the PlotRange

option to restrict the range of the function so that it will not plot below zero:

acceptPlot = Plot[acceptfun, {time, 0, timetrunc},
PlotStyle -» RGBColor [0, 1, 0], DisplayFunction -» Identity}];

Next, let's generate a graphics object for the non-truncated segment of the reject line using the Exponen-
tialReject function with the Wald intercept selected. First, we need to determine where to truncate
the reject line along the time axis (i.e., where the truncated segment of the reject line begins). We can
determine this by using the ExponentialReject function, leaving the fime argument symbolic, and

solving for the quantity of time which corresponds to the truncation value of failtrunc failures.

N[rejecttimetrunc = First[time /. Solve[rejectfun == failtrunc, time}]]

15249.2

Now we can generate the graphics object for the non-truncated segment of the reject line using the
ExponentialReject function while limiting the independent variable time to the domain of zero
and rejecttimetrunc hours. We will use the P1otRange option to trigger plotting of the range of the

function so that it is consistent with the generation of the other graphics objects.

rejectWaldPlot = Plot[rejectfun, {time, 0, rejecttimetrunc},
PlotStyle -» RGBColor([1l, 0, 0], DisplayFunction - Identity];

Next, let's generate a graphics object for the truncated segment of the reject line. Since we reject at
Jailtrunc failures between rejecttimetrunc and timetrunc hours, the truncated segment of the reject line

is a horizontal line at failtrunc failures over this domain:
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rejectTruncationPlot =
Plot[failtrunc, {time, rejecttimetrunc, timetrunc},
PlotStyle -» RGBColor([1l, 0, 0], DisplayFunction - Identity];

Now we need to generate a graphics object for the truncated segment of the accept line. This segment is
a vertical line at fimetrunc hours which extends from the end of the non-truncated segment of the accept
line to the truncated-reject criterion of failtrunc failures. Before we can generate this graphics object, we
must determine where the non-truncated segment of the accept line ends in terms of the failure axis. We

can obtain this failure quantity by using ExponentialAccept and supplying timetrunc hours as the
time argument.

N[acceptfailtrunc = acceptfun /. time - timetrunc]

4.82923

Now we can generate a graphics object for the truncated segment of the accept line. This is a vertical

line at timetrunc hours between acceptfailtrunc and failtrunc failures.

acceptTruncationPlot = Graphics[{RGBColor[0, 1, 0],
Line[{{timetrunc, acceptfailtrunc}, {timetrunc, failtrunc}}]}];

The final plot is obtained by displaying all of the graphics objects together:

Show[acceptPlot, rejectWaldPlot, rejectTruncationPlot,
acceptTruncationPlot, PlotRange - {{0, 25000}, {0, 7.5}}, Frame - True,
FrameLabel - {"test time, hours", "cumulative failures"},

GridLines -» Automatic, DisplayFunction - $DisplayFunction] ;

-

cumulative failures
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Identification of the reject, continue and accept regions can be overlaid thus:

decisionPlot = Show[%,
Graphics|[{Text["Reject", Scaled[{0.28, 0.85}]], Text["Continue",
Scaled[{0.4, 0.5}]], Text["Accept", Scaled[{0.7, 0.2}]11}1]1;
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Tabulate Accept and Reject Times

It would also be helpful to generate a table of decision rules for this test plan. First, we will generate a
list of failure quantities but temporarily suppress the display since it will be presented in a table below

(where it will be the first column):

failurelist = Range[0, failtrunc];

Next, we will generate a list of accept points calculated as discussed above for the accept-time column.
accepteqn = First[time /. Solve[acceptfun == r, time]];

acceptlist = Flatten[{Table[Which[ (acceptegn /. r » failure) < timetrunc,
accepteqn /. r » failure, (accepteqn /. r » failure) > timetrunc,
timetrunc], {failure, 0, failtrunc-1}], "NA"}];

Next, we will generate a list of reject points calculated as discussed above for the reject-time column.

rejecteqgn = First{time /. Solve[rejectfun == r, timel];
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rejectlist = Flatten[{Table[Which[N][ (rejecteqn /. r -+ failure)] < 0, "NA",
(rejecteqn /. r » failure) < timetrunc, (rejecteqn /. r - failure),
(rejecteqn /. r » failure) > timetrunc, timetrunc],
{failure, 0, failtrunc-1}], timetrunc}]:;

Now we display the entire table:

TableForm[Transpose[{failurelist, N[rejectlist], N[acceptlist]}],
TableHeadings - {None, {"Failures", "Reject Time (hours) <",
"Accept Time, (hours) 2"}}, TableAlignments - Center]

Failures Reject Time (hours) = Accept Time, (hours) =

0 NA 6099.7
1 NA 9149.54
2 NA 12199.4
3 3049.85 15249.2
4 6099.7 18299.1
5 9149.54 20828.1
6 12199.4 20828.1
7 20828.1 NA

Rejection is triggered by the occurrence of a failure provided the accumulated test time is less than or
equal to the value specified in the second column above. Acceptance occurs between failures if the

accumulated test time meets or exceeds the values specified in the third column above.

Overlay Accept and Reject Times on Decision-Rule Plot

It would be helpful to overlay the decision points from the table above on the decision-rule plot. First a
graphics object will be generated but temporarily suppressed for the reject points (excluding any points

which are not numerical).

rejectPtsPlot = MultipleListPlot|[
Select[Transpose[{rejectlist, failurelist}], (#[1] > O && #[2] > 0) &],
SymbolShape - PlotSymbol [Box, 3],
SymbolStyle -» RGBColor[l, 0, 0], DisplayFunction - Identity] ;

Next a graphics object will be generated but temporarily suppressed for the accept points (excluding any

points which are not numerical).
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acceptPtsPlot = MultipleListPlot]
Select[Transpose[{acceptlist, failurelist}], (#[1] > 0 && #[[2] > 0) &],
SymbolShape - PlotSymbol [Triangle, 5],
SymbolStyle - RGBColor [0, 1, 0], DisplayFunction -» Identity];

Now we will display the accept and reject points, represented by triangles and boxes, respectively,

overlaid on the decision-rule plot.

Show[decisionPlot, rejectPtsPlot,
acceptPtsPlot, PlotRange -» {{0, 25000}, {0, 7.5}}1:
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Approximate Operational-Characteristic Curve

It is also customary to plot the operational-characteristic function (i.e., acceptance probability as a
function of true MTBF) for a test design. Epstein and Sobel (1955) derived a pair of equations which
can be used to obtain an approximate operational-characteristic function. This function is approximate
even in the untruncated case and does not account for truncation at all. The more truncated the test plan,

the less accurate the approximation.

Two new add-on functions are based on these approximate Epstein and Sobel equations, Exponential~
AcceptProbability and ExponentialTrueMTBF. Obtaining answers from ExponentialAc-
ceptProbability as a function of the true MTBF requires that values for the exponent 4 be
obtained from ExponentialTrueMTBF. Numerical root-finding is used to obtain values for 4 since
ExponentialTrueMTBF is an implicit equation in terms of % (i.e., 4 cannot be isolated on the left-
hand side of the equation and solved for analytically). ExponentialTrueMTBF will do this automati-
cally provided a reasonable starting point is provided for the numerical root-finding algorithm. An easy

way to obtain a reasonable starting point is by plotting ExponentialTrueMTBF versus k as follows:

Plot [ExponentialTrueMTBF[lowertest, uppertest, h], {h, -5, 5},
PlotRange - All, Frame - True, FrameLabel - {"h", "true MTBF, hours"},
PlotStyle - RGBColor([0, 0, 1], GridLines - Automatic];

25000 /
w
: /
2 20000
Ky
= 15000
e
= /
o, 10000 /
=]
~
+ 5000

[ I
-4 -2 0 2 4

4-11



Upon inspection of the plot above, it would seem that -4 would be a reasonable starting point for true
MTBEF values in the 1000 to 8000 hours range. It is important to avoid zero as a starting point since the
equation is indeterminate there. Now we can generate an approximate operational-characteristic func-
tion by plotting ExponentialAcceptProbability versus true MTBF using the starting point just

obtained.

approxOC = Plot [ExponentialAcceptProbability|
lowertest, conrisk, uppertest, prodrisk, trueMTBF, -4],
{trueMTBF, 500, 8000}, PlotRange - Automatic, Frame - True,
FrameLabel -+ {"True MTBF, hours", "Accept Prob.",
"Approximate Operational-Characteristic Curve" , None},
PlotStyle - RGBColor[0, 0, 1], GridLines - Automatic];

Approximate Operational-Characteristic Curve
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Key Results from Exact Analysis

An exact analysis was performed and may be found in Appendix C. Key results are included in this
section for examination of the test design. The stage-by-stage acceptance, continuation and rejection

probabilities assuming the true MTBF equals the lower-test MTBF are:
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1tMTBFtable

Time ¥ Accept Pr. 2 Continue Pr. Z Reject Pr.

1. 3050. 0. 0.83678 0.16322
2. 6100. 0.06249 0.60776 0.32975
3. 9150. 0.10581 0.43781 0.45638
4. 12199. 0.13584 0.31504 0.54912
5. 15249. 0.15709 0.22658 0.61632
6. 18299. 0.17227 0.10829 0.71944
7. 20828. 0.22243 0. 0.77757

Each row in the table above sums to one as it should. The acceptance probability at the last stage (i.e.,
the consumer risk) is approximately 22.2% which is fairly close to the consumer-risk goal of 20%. It's

not possible to get exactly the desired consumer or producer risk when truncating.

The stage-by-stage acceptance, continuation and rejection probabilities assuming the true MTBF equals
the upper-test MTBF are:

utMTBFtable

Time % Accept Pr. Z Continue Pr. X Reject Pr.

1. 3050. 0. 0.96668 0.03332
2. 6100. 0.24998 0.68394 0.06608
3. 9150. 0.42326 0.48583 0.09091
4. 12199. 0.5434 0.34752 0.10909
5. 15249. 0.62839. 0.24936 0.12225
6. 18299. 0.6891 0.15182 0.15907
7. 20828. 0.80273 0. 0.19727

The rejection probability at the last stage (i.e., the producer risk) is approximately 19.7%. This is quite
close to the producer-risk goal of 20%.

The expected quantity of failures as a function of true MTBF is:
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Show[expectedfailuresPlot];

Exact-Analysis Curve
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The expected quantity of failures if the true MTBF equals the lower-test MTBF is 4.46. The expected
quantity of failures if the true MTBF equals the upper-test MTBF is 2.63.

The expected quantity of test time as a function of true MTBF is:

Show[expectedtesttimePlot] ;

Exact-Analysis Curve
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The expected test time if the true MTBF equals the lower-test MTBF is 9,811 hours. The expected test
time if the true MTBF equals the upper-test MTBF is 11,553 hours.

The operational-characteristic curve (i.e., the acceptance probability as a function of true MTBF) is:



Show[ocPlot] ;

Exact Operational-Characteristic Curve
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The exact operational-characteristic curve can be overlaid on the approximate one:

Show[approx0OC, ocPlot];

Approximate Operational-Characteristic Curve
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The approximate operational-characteristic curve was quite good in this case due to the modest level of

truncation.
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Summary

Test planners and evaluators were provided, in a timely fashion, with a truncated exponential sequential
test plan that fairly closely met their requirements. They were also provided with key results of an exact
analysis of the test design, including stage-by-stage acceptance, continuation and rejection probabilities,

actual consumer and producer risks and operational-characteristic curve.

The sequential test designed in this chapter would likely result in a markedly shorter test length com-
pared with a typical fixed-length test. This chapter can serve as an electronic template for future test
designs.



Chapter 5

Simulation-Based Hypergeometric Sequential Test Plan:
Case Study 4

Introduction

There are 310 troubleshooting procedures for the maintenance of a new Army vehicle in need of evalua-
tion. Evaluating each of the procedures would be costly in terms of cost and schedule. A statistically-
sound method is desired whereby the procedures can be progressively evaluated and, if they are found to
be highly error-free, all 310 procedures can be accepted based on a sample. If the procedures are not
sufficiently error-free, acceptance based on a sample will not occur therefore all of the procedures will

have to be reviewed and corrected.

The hypergeometric distribution, not the binomial, is applicable to this problem since we will be sam-
pling without replacement from a finite population and each troubleshooting procedure will be judged to
be acceptable or defective. In contrast to conventional sequential test plans, which ultimately lead to
either acceptance or rejection, rejection is not possible with the plan designed in this chapter. If the
procedures are not sufficiently error-free, all 310 procedures will be evaluated and subsequently cor-
rected. It doesn't appear that test-design methodology is available in the literature for this case. Conse-
quently, the approach taken here is to develop a hypergeometric sequential simulation and then use it to
approximately characterize the behavior of the hypergeometric sequential decision rules. We can

through trial-and-error arrive at an acceptable test plan.

Potential Test Plan Decision Rules

We will need functions for the hypergeometric distribution which are defined in the standard add-on

package DiscreteDistributions which is loaded thus:

Needs["Statistics’ DiscreteDistributions "]

The usage message for the hypergeometric distribution is:
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? HypergeometricDistribution

HypergeometricDistribution[n, nsucc, ntot] represents the
hypergeometric distribution for a sample of size n, drawn without
replacement from a population with nsucc successes and total
size ntot. A HypergeometricDistribution[n, nsucc, ntot] random
variable describes the number of successes occuring in the sample.

It's important to note that random samples must be drawn without replacement at each stage of the test

plan!

The entire population of troubleshooting procedures is 310. After some discussion with the test planners
and evaluators, it seems prudent to design a test plan where the probability of acceptance based on a
sample of the 310 procedures will not appreciably exceed 20% if the number of troubleshooting proce-

dures containing errors is 31 or more.

Let's assume we have 310 troubleshooting procedures 31 of which contain errors (i.e., 90% are error-

free). If we draw a sample of 15, the probability of obtaining 0 procedures with errors is:

PDF [HypergeometricDistribution[15, 31, 310], 0] // N

0.198032

This is the first increment of consumer risk. This value is too high since the test plan should grow stage-

by-stage towards 20%, not start there. Let's try a sample of size 20:

N[PDF [HypergeometricDistribution[20, 31, 310], 0]]

0.113213

This is a more reasonable starting point. It's roughly half of the desired cumulative acceptance probabil-

ity of 20%. The greatest acceptance probability will occur at the first stage.

Several sequences of decision rules were simulated as described in the rest of this chapter and the

following rules were eventually arrived at:

Stage Procedures Cumulative Accept if

to Examine Procedures Examined Cumulative Errors <
1 20 20 0
2 20 40 1



3 20 60 2
4 20 80 3
5 20 100 4
6 20 120 5
7 20 140 6
8 20 160 7
9 20 180 8
10 20 200 9
11 20 220 10
12 20 240 11
13 20 260 12
14 20 280 13
15 30 310 N/A

Simulations of these rules are provided in subsequent sections of this notebook. Let's graph these accept

decision rules. The values for the cumulative number of procedures examined at stages 1 through 14 are:

xaxispts = Range[20, 280, 20]

{20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280}
A list of the decision rules is then:

pts = Transpose|[ {xaxispts, Range[0, 13]}]

{{20, 0}, {40, 1}, {60, 2}, {80, 3}, {100, 4}, {120, 5}, {140, 6}, {160, 7},
{180, 8}, {200, 9}, {220, 10}, {240, 11}, {260, 12}, {280, 13}}

Functions defined in the standard add-on package MultipleListPlot will be needed so we'll load
the package now.

Needs["Graphics 'MultipleListPlot "]

The decision-rule plot is:




MultipleListPlot[pts,
SymbolShape -» PlotSymbol [Triangle, 4], Frame - True,
Axes -» False, FrameLabel -» {"Cumulative Procedures Examined",
"Cumulative Rejects Found", "Accept Decision Rules", None},
GridLines -» {xaxispts, Range[0, 13]}}:
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Identification of the reject, continue and accept regions can be overlaid thus:

decisionPlot = Show[%, Graphics[{Text["Continue", Scaled[{0.4, 0.7}]],
Text["Accept”, Scaled[{0.7, 0.2}11}11:;

Accept Decision Rules
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It is intended that these decision rules will be used thus:

» Select 20 procedures at random from the population of 310.

» If 0 rejects are found, stop the test and accept all the procedures.

= Otherwise continue to the next stage by randomly selecting 20 procedures from the remaining
290.



s If the cumulative number of rejects equals 1, then stop the test and accept all the procedures.
» Otherwise continue to the next stage by randomly selecting 20 procedures from the remaining
270.

The decision rules are defined for use in simulations later in this notebook.
accept[0] =-1;

Dofaccept[i]}] =i-~-1, {i, 1, 15-1}]
Here are the rules:

? accept
Global "accept
accept([0] = -1
accept[l] =0
accept[2] =1
accept[3] =2
accept[4] =3
accept{5] =4
accept[6] =5
accept[7] =6
accept[8] =7
accept[9] =8
accept[10] =9
accept{11] =10
accept[12] =11
accept[13] =12

accept[14] =13




Development of Simulation for Potential Decision Rules

In this section, we develop functions needed for simulating hypergeometric sequential test plans. In the
next section these functions will be used to simulate and approximately characterize the decision rules

proposed herein.

The samples that will be taken from the original population of 310 (unless acceptance occurs) are

assigned as the value of the symbol sample:

sample = Append [Table[20, {14}], 30]

{20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 30}

The quantity of samples is:

Length[sample]

15

The quantities of unexamined procedures at stages 0 through 15 are assigned as the value of the symbol

proc:

proc = 310 - FoldList[Plus, 0, sample]

{310, 290, 270, 250, 230, 210, 190, 170, 150, 130, 110, 90, 70, 50, 30, 0}
The number of such quantities is:

Length[proc]

i6
The initial quantity of defective procedures is assigned as the value of the symbol initdef:

initdef = 31;

Next we will define a function that will increment the stage number by one and add a hypergeometric

random variable to the running total of defective procedures discovered during the test.
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fun[{stage_Integer, cumdef Integer}] :=
{stage + 1, cumdef + Random [HypergeometricDistribution|
samplep,;.ge,1ys initdef - cumdef, procy.iage,13ll}

Now we will define a function that will be used to test the simulation against the acceptance rules. The
simulation will continue as long as the running total of defective procedures exceeds the acceptable

quantity for that stage.

testfun[{stage Integer, cumdef Integer}] := accept[stage] < cumdef

Let's reset the pseudorandom number generator using the integer one as a seed. This will allow a

repeatable result which is helpful when de-bugging code.
SeedRandom[1]
Now we can simulate a single hypergeometric sequential test plan as follows:

NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]]

{{o, 0}, {1, 2}, {2, 5}, {3, 8}, {4, 8}, {5, 12}, {6, 14}, {7, 17}, {8, 21},
{9, 21}, {10, 23}, {11, 25}, {12, 27}, {13, 28}, {14, 28}, {15, 31}}

This simulation went the distance. Afier some experimentation, it was found that using the integer 10 as

the seed results in a stage-one acceptance:

SeedRandom[10]

NestWhilelist[fun, {0, 0}, testfun, 1, Length[sample]]

{{o, 0}, {1, 0}}

In the next section, much larger simulations will be run using the functions just defined.

Simulation of Decision Rules

= Assume Defect Quantity Equals 40

If 40 of the 310 procedures are defective, then the percentage of defectives is
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40
— //N
310

0.129032
and the percentage of non-defectives is

1-%

0.870968

The initial quantity of defective procedures is assigned as the value of the symbol initdef:
initdef = 40;

The pseudorandom number generating function is:

fun[{stage_Integer, cumdef Integer}] :=
{stage +1, cumdef + Random [HypergeometricDistribution]|
samplenstaged] , initdef - cumdef, ProCp,tages1yl ]}

The function that will test the simulation against the acceptance rules is:

testfun[{stage Integer, cumdef Integer}] := accept[stage] < cumdef

The desired quantity of simulated hypergeometric sequential tests is assigned as the value of the symbol
simgty:

simgty = 25000;
A simulation of 25,000 hypergeometric tests is generated as follows:

simlist = Table|
Length[NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]]] -1,
{simqty}];

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina-

tions at each stage are assigned as the value of simlist40:

simlist40 =
Table[Length[Select[simlist, #1 == i &]], {i, 1, Length[sample]}]:
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The filename hypersimfile3 will be assigned as the value of the symbol simfile.
simfile = "hypersimfile3";

The simulation results are saved to this file so that they can be retrieved for subsequent analysis if need
be.

Save[simfile, simlist40]

These simulation results may be easily retrieved thus:

<< "hypersimfile3";
Stage-by-stage termination probabilities are:

simlistd40
TableForm [Transpose [{Range[1, 15], N [ -—t-] }] ,
simgty

TableHeadings - {None, {"Stage", "Termination Probability"}},
TableAlignments - Center]

Stage Termination Probability
1 0.05824
2 0.00896
3 0.00228
4 0.0004
5 0.00004
6 0.00008
7 0.

8 0.
9 0.
10 0.
11 0.
12 0.
13 0.
14 0.
15 0.93

The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that

went the distance. Cumulative termination probabilities are:




. simlist40
TableForm[Transpose[{Range[0, 15], N[FoldList[Plus, O, —:;m—]]}] ,

TableHeadings -
{None, {"Stage", "Cumulative Termination Probability"}},
TableAlignments - Center]

Stage Cumulative Termination Probability

0 0.

1 0.05824
2 0.0672
3 0.06948
4 0.06988
5 0.06992
6 0.07
7 0.07
8 0.07
2 0.07
10 0.07
11 0.07
12 0.07
13 0.07
14 0.07
15 1.

The stage 1 acceptance probability is:

PDF [HypergeometricDistribution[20, 40, 310], 0] // N

0.0573767

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above.
The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately
7%.

Simulation of Additional Defect Quantities

Appendix E contains the bulk of the simulation results for the hypergeometric sequential test plan
designed in this chapter and was executed in conjunction with it. Appendix E contains simulations
assuming the number of defective procedures in the population of 310 was 4, 7, 10, 13, 16, 19, 22, 25,
28, 31, 34 and 37.

-



Stage-by-Stage Acceptance Probabilities

In this section, stage-by-stage acceptance probabilities will be plotted.

First let's retrieve the simulation results:

<< "hypersimfile3";

Lists of the cumulative acceptance points for each case simulated will be obtained next:

simlist40

cumacc40 =N[Delete[FoldList[Plus, 0, ], 12}, {163}1]]

simgty

{0.05824, 0.0672, 0.06948, 0.06988, 0.06992,
0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07}

simlist37

cumacec37 = N[Delete[FoldList[Plus, 0, ], (113, {(16}}]]

simgty
{0.07104, 0.08424, 0.08796, 0.08892, 0.08912, 0.08916,
0.08916, 0.0892, 0.0892, 0.0892, 0.0892, 0.0892, 0.0892, 0.0892}

simlist34

cumace3d = N[Delete[FoldList[Plus, 0, —
simqgty

], €41}, {16}}]]

{0.09204, 0.111, 0.11652, 0.11896, 0.11964, 0.12, 0.12008,
0.12008, 0.12008, 0.12008, 0.12008, 0.12008, 0.12008, 0.12008}

simlist3l

cumacc3l = N[Delete[FoldList[Plus, 0, ], (111, {16}3]]

simgty
{0.115, 0.1462, 0.156, 0.16008, 0.16152, 0.16188, 0.16208,
0.16212, 0.16212, 0.16212, 0.16212, 0.16212, 0.16212, 0.16212}

simlist28

cumacc28 = N[Delete[FoldList[Plus, O, ], 1413, {1631]]

simgty

{0.14216, 0.18124, 0.1954, 0.202, 0.20524, 0.20636, 0.20696,
0.2074, 0.2074, 0.2074, 0.2074, 0.2074, 0.2074, 0.2074}
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simlist25

cumacc25 = N[Delete [FoldList[Plus, O, ], (41}, {16}11]]

simgty

{0.17484, 0.2296, 0.2542, 0.26608, 0.27372, 0.27872, 0.28084,
0.28168, 0.28228, 0.2824, 0.28244, 0.28244, 0.28244, 0.28244}

simlist22

cumacc22 = N[Delete [FoldList[Plus, 0, ], 111}, {16}1]]

simgty

{0.22056, 0.29716, 0.33464, 0.35728, 0.3714, 0.38032, 0.38584,
0.38948, 0.3918, 0.39264, 0.39296, 0.39308, 0.39316, 0.39316}

simlistl9

cumaccl9 = N[Delete [FoldList [Plus, 0, 1. 141}, {16}}]]

simgty

{0.26868, 0.37168, 0.42664, 0.46164, 0.48568, 0.50348, 0.51712,
0.5268, 0.53392, 0.53944, 0.5428, 0.54484, 0.546, 0.54632}

simlistlé

cumaccl6 = N[Delete [FoldList[Plus, 0, ], 413, {16}1]]

simgty

{0.33352, 0.46376, 0.53612, 0.58772, 0.62432, 0.65468, 0.68032,
0.7004, 0.71812, 0.73352, 0.74772, 0.76104, 0.77324, 0.7828}

simlistl3

cumaccl3 = N[Delete[FoldList [Plus, 0, ], 1113, {16}}]]

simgty

{0.41144, 0.575, 0.66796, 0.73096, 0.77728, 0.81316, 0.84472,
0.8718, 0.89688, 0.91956, 0.94104, 0.96092, 0.98216, 1.}

simlistl0

cumaccl0 = N[Delete[FoldList[Plus, 0, ], 413, {16}}]]

simgty

{0.50552, 0.701, 0.8024, 0.86652, 0.90868,
0.94004, 0.9636, 0.97984, 0.99068, 0.9974, 1., 1., 1., 1.}

simlist7

cumacc? = N[Delete[FoldList[Plus, 0, ], 1113, {161}]]

simgty

{0.6214, 0.82416, 0.91408, 0.95992,
0.98368, 0.9944, 0.999, 1., 1., 1.,1.,1., 1., 1.}
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simlist4
simqty

cumacc4 =N[Delete[FoldList[Plus, 0, ], €411, {16}1]]

{0.7682, 0.93672, 0.9854, 0.99832, 1., 1., 1., 1., 1., i.,1.,1.,1.,1.}

We'll plot just the camulative acceptance probabilities for the cases where the true fraction of error-free

procedures was 90% or higher.

MultipleListPlot[Transposel {xaxispts, cumaccd}],
Transpose| {xaxispts, cumacc7}], Transpose[{xaxispts, cumacclO}],
Transpose[ {xaxispts, cumaccl3}],
Transpose[ {xaxispts, cumaccl6}], Transpose[{xaxispts, cumacclS}],
Transpose[ {xaxispts, cumacc22}], Transpose][{xaxispts, cumacc25}],
Transpose[ {xaxispts, cumacc28}], Transpose[{xaxispts, cumacc31}],
Axes - False, Frame -» True, FrameLabel -

{"Cumilative Procedures Examined", "& Early Accept Prob.",
"Assuming 9_$% of Procedures are Error-Free", None},

PlotLegend -» {"99%", "98%", "97%" 6 "O6%", "O5%", "04%",
"g3%n, wQ2%", "9olgw, "90%"}, SymbolShape -

{PlotSymbol [Diamond, Filled -» False], PlotSymbol[Diamond,
Filled - True], MakeSymbol [RegularPolygon{5, 3]], PlotSymbol]|
Triangle, Filled -» True], PlotSymbol[Triangle, Filled » False],

PlotSymbol[Box, Filled -» True], PlotSymbol[Box, Filled - False],

PlotSymbol[Star, Filled » True], PlotSymbol[Star, Filled » False],

MakeSymbol [RegularPolygon[5, 3]]1}1’

Assuming 9_% of Procedures are Error-Free
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Cumulative Procedures Examined

We'll also tabulate the cumulative acceptance probabilities for all cases simulated:
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TableForm|[

Prepend|[Transpose[{Range[l, 14], xaxispts, Round[100 cumacc40],

Round [100 cumacc37], Round[100 cumacc34], Round [100 cumacc3l],
Round[100 cumacc28}], Round[100 cumacc25], Round [100 cumacec22],
Round {100 cumaccl9], Round[100 cumaccl6], Round {100 cumaccl3],
Round [100 cumaccl0], Round[100 cumacc7], Round[100 cumaccd]}],

{"stage", "; Proc'", "Q", "g", "—3—4_", "2", "2—9.", "g",
"22", "19", ll16", "13", "10"’ “7"’ "4"}],

TableHeadings - None, TableDirections - {Column, Row},
TableAlignments - Center, TableSpacing - 1.3]

Stage Z Proc.

1 20
2 40
3 60
4 80
5 100
6 120
7 140
8 160
9 180
10 200
11 220
12 240
13 260
14 280

40 34
9

=

1
12
12
12
12
12
12
12
12
12
12
12
12

© LYY YwYe oo o3|y

6
7
7
7
7
7
7
7
7
7
7
7
7
7

31
12
15
16
16
16
16
16
16
16
l6
16
i6
16
16

28
14
18
20
20
21
21
21
21
21
21
21
21
21
21

25

17
23
25
27
27
28
28
28
28
28
28
28
28
28

22

22
30
33
36
37
38
39
39
39
39
39
39
39
39

Operational-Characteristic Curve

78

100

10
51
70
80
87
91
94
96
98
99

100

100

100

100

100

82
91
96
98
99
100
100
100
100
100
100
100
100

In this section, an approximate operational-characteristic curve will be generated. First, the points are:
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40
N|[ocpts = {{1- 50 Last[cumacc40] },

1 37 Last 3711}, {2 34 Last[ 341}
- ——, Last[cumacc - —— , Last[cumacc R
{ 310 [ I 310

1 31 Last 31 1 28 Last[ 281}
~ ——, Last|cumacc -— ast[cumacc ,
{ 310 [ 1} A 310 '

1 25 Last| 251}, {1 22 Last[ 221}
- — as cumacc - —, Las cumacc
{ 310’ ! 310 !

{1 19 Last| 19} ¢! 16 Last[ 16]}
- —— , Last[cumacc - —— , Last[cumacc ’
310 1} 310

1 13 Last 13] 1 10 Last] 101}
- —— , Last[cumacc ~ ——, Last[cumacc ,
{ 310 [ I 310

7 4
{1--§I6, Last[cumacc7]}, {1- 370" Last[cumacc4]}}]

{{0.870968, 0.07}, {0.880645, 0.0892}, {0.890323, 0.12008},
{0.9, 0.16212}, {0.909677, 0.2074}, {0.919355, 0.28244},
{0.929032, 0.39316}, {0.93871, 0.54632}, {0.948387, 0.7828}%,
{0.958065, 1.}, {0.967742, 1.}, {0.977419, 1.}, {0.987097, 1.}}

The points can be formatted in a table thus:

TableForm[N[ocpts],
TableHeadings » {None, {"True Fraction Correct Procedures",
"Acceptance Probability"}}, TableAlignments - Center]

True Fraction Correct Procedures Acceptance Probability
0.870968 0.07
0.880645 0.0892
0.890323 0.12008

0.9 0.16212
0.909677 0.2074
0.919355 0.28244
0.929032 0.39316
0.93871 0.54632
0.948387 0.7828
0.958065 1.
0.967742 1.
0.977419 1.
0.987097 1

Now an approximate operational-characteristic curve is generated:
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MultiplelistPlot{ocpts,
SymbolShape » PlotSymbol[Triangle, 4}, Frame -» True, Axes - False,
FrameLabel - {"True Fraction of Procedures Correct”,
"Approx. Early Accept. Prob.",
"Operational-Characteristic Curve", None}];

Operational-Characteristic Curve
1 A A A A

Early Accept. Prob.
o
(o)}

L A
0.2 A
A

A A

Approx.

0.88 0.9 0.92 0.94 0.96 0.98
True Fraction of Procedures Correct

If 90% or fewer of the 310 procedures are correct, the probability of acceptance based on a sample will
not appreciably exceed 16%. If 95% or more of the procedures are correct, the probability of acceptance
based on a sample exceeds 75%. And if 96, 97 or 98% of the procedures are correct, its likely that
acceptance will occur by stage 3 (60 procedures examined), stage 2 (40 procedures examined) or stage 1

(20 procedures examined), respectively.
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Summary

A hypergeometric sequential test plan was proposed and examined in this notebook. Simulations were
performed assuming the number of defective procedures in the population of 310 was 4, 7, 10, 13, 16,
19, 22, 25, 28, 31, 34, 37 and 40. An approximate operational-characteristic curve was plotted. Approxi-
mate stage-by-stage acceptance probabilities were obtained and plotted as well. The test plan designed in
this chapter is very good at not accepting troubleshooting procedures (based on sampling) when the
percentage of correct procedures is less than 90%. The plan is also very good at acceptance if the true
percentage of correct procedures is greater than or equal to 95%. And if the true percentage of correct

procedures is greater than or equal to 96%, acceptance should occur quickly.

This chapter documents a new, simulation-based hypergeometric sequential test design for evaluating
maintenance or troubleshooting procedures. The method was developed for a new Army vehicle. The
quantity of troubleshooting procedures was large enough that evaluation of all procedures would be
costly in terms of cost and schedule. Yet the quantity of procedures was too small to use binomial
sequential test methods available in the literature. A statistically-sound method was developed whereby
the procedures can be progressively evaluated and, if they are found to be highly error-free, all proce-
dures can be accepted based on a sample. If the procedures are not sufficiently error-free, acceptance
based on a sample will not occur. Thus the new test-design method provides for accept-continue deci-

sion-making, not the traditional accept-continue-reject decision-making.
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Chapter 0

Summary

Sequential test plans can be highly beneficial because expected test lengths and sample sizes can be
often reduced by up to half compared with the more common fixed-length test plans. The design and
analysis of sequential test plans is quite challenging. The purpose of this report is to document and
disseminate recent improvements in order to help the Army take advantage of sequential test plans

while avoiding the pitfalls.

A key accomplishment included in this report concerns the exact-analysis method for exponential
sequential test designs. Previously, such exact-analysis methodology was for all practical purposes
restricted to the statistical research community. Indeed, little practical use was found for these methods
for the past forty years. It was possible to re-formulate and implement the exact-analysis method in
modern mathematics software in a form that can, for the first time, be readily used by test planners. It
was deemed decisively advantageous to undertake this effort because of the resurgence of truncated

exponential sequential test designs, the properties of which are very difficult to obtain otherwise.

Chapter 2 contains a case study of a contractor-proposed exponential sequential test design for an
imaging system. The test design was both analyzed exactly and simulated in order to rapidly character-
ize it, including assessing the impact of truncation. The test planners were then able to confidently
accept the plan. This chapter can serve as a template for the verification of such test plans. Indeed, the

author has already had occasion to do so many times.

Chapter 3 contains a case study that illustrates a critical but not infrequent error contained in a recent,
contractor-proposed exponential sequential test design for another imaging system. The proposed test
plan would have resulted in a risk to the Army of 41%, approximately twice the Army's not-to-exceed
value of 20%. This chapter was prepared in order to clearly illustrate this mistake and thereby help test
planners avoid it in the future.

Chapter 4 contains the design and exact analysis of a truncated, exponential sequential test plan for a
tactical terminal. The sequential test design would likely result in a markedly shorter test length com-
pared with a typical fixed-length test. A test design that met the program's requirement was provided in

a timely fashion. This chapter can serve as template for future test designs.
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Chapter 5 documents a new, simulation-based hypergeometric sequential test design for evaluating
maintenance or troubleshooting procedures. The method was developed for a new Army vehicle where
the quantity of troubleshooting procedures was large enough that evaluation of all procedures would be
costly in terms of cost and schedule. Yet the quantity of procedures was too small to use binomial
sequential test methods available in the literature. A statistically-sound method was developed whereby
the procedures can be progressively evaluated and, if they are found to be highly error-free, all proce-
dures can be accepted based on a sequence of samples. If the procedures are not sufficiently error-free,
acceptance based on sampling should not occur. Thus the new test-design method provides for accept-

continue decision-making, not the traditional accept-continue-reject decision-making.
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Appendix A

Exact Analysis of Proposed Exponential Sequential
Decision Rules from Chapter 2

Introduction

An exact method was developed by Epstein, Patterson and Qualls [1963] for analyzing a sequence of
decision rules such as the one simulated in chapter 2. This appendix contains an analysis of the exact
stage-by-stage acceptance, continuation and rejection probabilities resulting from the sequence of
decision rules. Included are the important special cases that arise at the last stage: consumer risk and
operational-characteristic curve. Mathematica symbolics are used to obtain results with the true Mean
Time Between Failures (MTBF) held symbolic until a numerical value is supplied. The stage-by-stage
calculations are performed in such a way that numerical errors that would otherwise accumulate are
entirely avoided. The results of all calculations are "exact” but include occurrences of the exponential

function. Numerical approximations to any desired precision are provided as well.

Setup

Functions contained in the standard add-on package Statistics DiscreteDistributions’

are needed by this method which we load now:

Needs["Statistics DiscreteDistributions "]

Formulate Reliability Test Plan Decision Rules

In order to apply the exact-analysis method, we need to construct a list of accept points from the deci-
sion rules provided in chapter 2. Each pair will be of the form {#;, i} where the first pair defines the zero-
failure accept time, the second pair defines the one-failure accept time, etc. The accept rules are

assigned as the value of the symbol accept:

A-3




N[accept = {{1395, 0}, {2092, 1},
{2789, 2}, {3487, 3}, {4184, 4}, {4881, 5}, {5578, 6}}]

{{139%95., 0.}, {2092., 1.}, {2789., 2.},
{3487., 3.}, {4184., 4.}, {4881., 5.}, {5578., 6.}}

We need to construct a list of reject points from these decision rules. Each pair will be of the form {t;, i}
where the first pair defines the shortest reject time and the corresponding quantity of failures, the second
defines the second-shortest reject time and the corresponding quantity of failures, etc. The reject rules
are assigned as the value of the symbol reject:

N[reject = {{697, 3}, {1395, 4}, {2092, 5}, {2789, 6}, {5578, 7}}]

{{697., 3.}, {1395., 4.}, {2092., 5.}, {2789., 6.}, {5578., 7.}}

It would be helpful to graphically depict the decision rules for this test design. We will need functions

contained in the standard add-on package Graphics "MultipleListPlot " which we load now:

Needs["Graphics 'MultipleListPlot "]

The decision rules, with the accept and reject points represented by triangles and boxes, respectively, are

plotted as follows:



decisionPlot =
MultipleListPlot[accept, Reverse[reject], PlotJoined - False,
PlotRange » {{0, Automatic}, {0, Automatic}}, Frame - True,
FrameLabel - {"test time, hours", "cumulative failures"},
GridLines - Automatic,
SymbolShape » {PlotSymbol [Triangle, 5], PlotSymbol[Box, 31},
SymbolStyle » {RGBColor[0, 1, 0], RGBColor[l, 0, 0]}]:;
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Identification of the reject, continue and accept regions can be overlaid thus:

Show[%, Graphics|[{Text["Reject", Scaled[{0.2, 0.8}]], Text["Continue",
Scaled[{0.4, 0.5}]], Text["Accept", Scaled[{0.7, 0.2}11}11:
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Define Function for Stage Times

In this step, we will construct a stage-time function. First, a list is needed of the times for each stage.
The stage times are comprised of the accept and reject times joined into a single list and sorted from

shortest to longest. The list of stage times is constructed as follows:

timeValues =
Sort{Union[First[Transpose[accept]], First[Transpose[reject]]], Less]

{697, 1395, 2092, 2789, 3487, 4184, 4881, 5578}

It should be noted that the times are expressed as exact numbers (i.e., either as integers or rational
numbers) in order to avoid approximations until after the stage-by-stage calculations are complete. If the
times are expressed in decimal form, Mathematica will treat them as approximate and will use machine-

precision (unless many zeroes are used).

It should also be noted that the function Union was used to eliminate any repeats occurring as the two

lists were combined.

The quantity of stages is:

Length[timeValues]

8

A function which will provide time values as a function of stage, except for the special case of stage

Zero, is:
t[stage Integer /; stage > 0] := timeValues[stagel]
The initial condition for time [Epstein, et al. 1963, equation 16]:

t[i_ /;i==0]:=0

Construct Accept-Number Function

In this step, we will construct an accept-number function. First, we will generate an Interpolating-

Function object from accept:



fA = Interpolation[accept, InterpolationOrder - 1]

InterpolatingFunction[{{1395, 5578}}, <>]

Now, we define a function which will provide an integer-valued accept number for each stage using

Epstein, et al. 1963, equation 11:
a[stage_Integer /; stage > 0] := -1 /; t[stage] < First[First[accept]]

a[stage_Integer /; stage > 0] := Floor[fA[t[stage]]]

A special case of the accept-number function is defined for the initial condition at stage zero [Epstein, et
al. 1963, equation 16]:

a[stage Integer /; stage == 0] := -1

Construct Reject-Number Function

In this step, we will construct a reject-number function. First, we will generate an Interpolating-

Function object from reject:

fR = Interpolation[reject, InterpolationOrder - 1]

InterpolatingFunction[{{697, 5578}}, <>]

Now, we define an function which will provide an integer-valued reject number for each stage using

Epstein, et al. 1963, equation 12:

r[stage Integer /; stage > 0] :=Ceiling[fR[t[stage]]]
A special case of the reject-number function is defined for the initial condition at stage zero:

r[étage_ /; stage ==0] :=1

Tabulation of Accept, Continuation and Reject Points

In this step, we generate a table of accept, continuation and reject numbers. This is done to provide a

convenient stage-by-stage listing of the test plan to be analyzed. The table is generated as follows:
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TableForm[Transpose|{Range[Length[timeValues]],
Table[N[t[stage]], {stage, 1, Length[timeValues]}],
Table[a[stage], {stage, 1, Length{timeValues]}], _
Append[Table[a[stage] +1, {stage, 1, Length[timeValues] -1}], NA],
Append[Table[r[stage] -1, {stage, 1, Length[timeValues] -1}], NA],
Table[r[stage], {stage, 1, Length[timeValues]}]}],
TableHeadings -> {None, {"Stage", "Time", "Accept",

"Continue (min)", "Continue (max)", "Reject"}},
TableSpacing -» {1, 1.5}, TableAlignments - Center]

Stage Time Accept Continue (min) Continue (max) Reject
1 697. -1 0 2 3
2 1395. 0 1 3 4
3 2092. 1 2 4 5
4 2789. 2 3 5 6
5 3487. 3 4 6 7
6 4184. 4 5 6 7
7 4881. 5 6 6 7
8 5578. 6 NA NA 7

Construct Function for Acceptance/Continuation Probability for a Quantity of
Failures

In this step, we construct a function for calculating acceptance/continuation probabilities for a quantity

of failures [Epstein, et al. 1963, equation 17]:

ACProbability[stage , failure , trueMTBF ] /;
And[stage > 0, (a[stage-1] +1) s failure s r[stage] -1] :=
aclist[stage, failure, trueMTBF]

ACProbability[stage , failure , trueMTBF ] /;
And[stage > 0, Not[(a[stage-1] +1) s failure s r[stage] -1]] :=0

Two initial conditions for this function are also needed [Epstein, et al. 1963, equation 16]:
ACProbability[0, 0, trueMTBF_] :=1

ACProbability[0, failure Integer /; failure >0, trueMTBF_] :=0
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Up-front Calculation of Acceptance/Continuation Probabilities

. In order to reduce execution time, stage-by-stage calculations of acceptance and continuation probabili-

ties are developed in this step.
A function for building up the calculations is:

aclistfunction[stage_Integer, failure Integer, trueMIBF ] :=
aclist[stage, failure, trueMTIBF] =
failure
ACProbability[stage-1, j, trueMTBF]
j=a[stage-1]+1
t[stage] - t[stage - 1]
trueMTBF

PDF [PoissonDistribution| ]/ failure- j]

An indexed variable aclist is used to build up the acceptance and continuation probabilities.
The acceptance and continuation points for the stages are:
Map[aclistfunction[l, #, trueMTBF] &,

Apply[Range, {a[i-1]+1, r[i] -1} /.1i-1]]

697 e—697/trueMTBF 485809 e-GS?/trueMTBF
trueMTBF

14

{ e—697 /trueMTBY
’

2 trueMTBF?

Map[aclistfunction[2, #, trueMTIBF] &,
Apply[Range, {a[i-1]+1, r{i] -1} /. i- 2]]

1395 e-1395/trueMTBF

trueMTBF !
1946025 e-1395/trueMTBF 1188048001 e—1395/trueMTBF

2 £trueMTBF? ! 3 trueMTBF°

{ e—13 95/trueMTBF

Map[aclistfunction[3, #, trueMTBF] &,
Apply[Range, {a[i-1]+1, r{i] -1} /. i=-3]]

1395 e-ZOQZ/trueMTBF 3890655 e-2092/trueMTBF

4

) { trueMTBF ! 2 trueMTBF?
4239172471 e 2092/trueMIBE 7093185060133 e 2092/ trueIEr
3 trueMTBF’ ! 12 trueMTBF*




Map[aclistfunction[4, #, trueMTBF] &,
Apply[Range, {a[i-1]+1, r[i] -1} /.i-4]]

3890655 e-Z789/trueMTBF 16613704547 e—2789/trueMTBF
{ 2 trueMTBF? ! 6 trueMTBF”
12291172226983 e 278%/trueMIBF  1930036199487099 e~278%/trueMIBl
6 trueMTBF* ’ 2 trueMTBF”

’

Map[aclistfunction{5, #, trueMTBF] &,
Apply[Range, {a[i-1]+1, r[i] -1} /. i-5]]

16613704547 e 3487/trueMIBF 5385753000789 e~ 3487/trueMIBr
{ 6 trueMTBF" ! 6 trueMTBF*
5938826155984575 e 3487/trueMIBF  11337723855460591714 e-3487/truetIBr
2 trueMTBF” ! 9 trueMTBF®

4

Map[aclistfunction[6, #, trueMIBF] &,
Apply[Range, {a[i-1]+1, r[i] -1} /.1i- 6]]

23887538000789 e-*184/trueMIBF
{ 6 trueMTBF*
17233046227251829 e~4184/trueMBY  154673751220700754709 e~184/trueMIBr
3 trueMTBF* ’ 36 trueMTBF®

14

Map[aclistfunction[7, #, trueMIBF] &,
Apply[Range, {a[i-1]+1, r[i] -1} /.i->7]]

{ 17233046227251829 e #861/trueMIBE  598810949865435052465 e 1861/trueMIBr
3 trueMTBF” ’ 36 trueMTBF®

Map[aclistfunction[8, #, trueMTBF] &,
Apply[Range, {a[i-1]+1, r{i] -1} /. i- 8]]

{ 298810949865435052465 e 5576/ trueMIBE
36 trueMTBF®

Construct Function for Acceptance Probability for a Quantity of Failures

In this step, we construct a function for calculating acceptance probabilities for a quantity of failures

[Epstein, et al. 1963, equation 18}:

AcceptanceProbability[stage_Integer, failure Integer, trueMIBF ] :=
ACProbability[stage, failure, trueMTBF]
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Construct and Use Function for Acceptance Probability for Each Stage

In this step, we construct and use a function for calculating stage-by-stage acceptance probabilities

[Epstein, et al. 1963, equation 20]:

AcceptanceProbability[stage Integer, trueMIBF_] :=

a[stage]
AcceptanceProbability[stage, failure, trueMTIBF] /;

failure=a[stage-1]+1

a[stage - 1] < a[stage]

AcceptanceProbability[stage Integer, trueMTBF_] :=
0 /; Not[a[stage-1] < a[stage]]

The acceptance probability as a function of true MTBF is the sum of the probabilities of acceptance at
each stage. This is given by Epstein, et al. 1963, equation 14:

AcceptanceProbability[trueMTBF ] :=
n
Z AcceptanceProbability[trueMTBF , i_]
i=1
= Cumulative Acceptance Probabilities for Each Stage When trueMTBF is Symbolic

The cumulative acceptance probability for stage one when trueMTBF is left symbolic is:

AcceptanceProbability[stage, trueMTBF]
stage=1l

0

This result is obviously correct since the first opportunity for acceptance to occur is at stage two. The

cumulative acceptance probability for stage two when rrueMTBF is left symbolic is:

AcceptanceProbability[stage, trueMTBF]
stage=1

e—l395/trueMTBF

The result above is exact but partially symbolic. An exact result can be obtained for a specific value of
trueMTBF such as the lower-test MTBF as follows:




% /. trueMTBF - 503

1
©1395/503

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.06245182365757103602325

An answer accurate to 22 decimal places was elicited not because an answer this precise was needed, but
in order to trigger Mathematica to use arbitrary-precision arithmetic. Otherwise, machine-precision

arithmetic will be performed in hardware in which case Mathematica doesn't guarantee accuracy.

The cumulative acceptance probability for stage eight, the final stage, when trueMTBF is left symbolic

will be generated. This is also known as the operational-characteristic function.

8
OCfunction = Z AcceptanceProbability[stage, trueMTBF]
stage=1

-1395/truentsr , 298810949865435052465 @~5578/tTueMIBF
36 trueMTBF®
17233046227251829 e~1881/trueMIsr , 23887538000789 e 4184/ truetor

€

+

B +
3 trueMTBF” 6 trueMTBF*
16613704547 e-3487/trueMTBF . 3890655 e-2789/trueMTBF . 1395 e-2092/trueMTBF
6 trueMTBF> 2 trueMTBF* trueMTBF

OCfunction provides the exact acceptance probability as a function of rrueMTBF. The exact operational-

characteristic curve can now be plotted:
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ocPlot = Plot[OCfunction, {trueMTBF, 1, 3000}, GridLines - Automatic,
Frame -» True, FrameLabel - {"True MTBF, hours", "Accept Prob.",
"Exact Operational-Characteristic Curve” , None}]:;

Exact Operational-Characteristic Curve
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It should be noted that the operational-characteristic plot is a key test-design graphic thus the plot above
was assigned as the value of the symbol ocPlot so it could be readily inserted in Chapter 2.

Cumulative Acceptance Probabilities for Each Stage When trueMTBF Equals the Upper-Test
MTBF

It would be useful to generate a list of cumulative acceptance probabilities for all eight stages when the
true MTBF equals the upper-test MTBF. The parameter trueMTBF will be left symbolic in order to be
consistent with up-front calculations. The desired list is generated but display of the output is tempo-

rarily suppressed.

mycumacc = Table [

stagelim
AcceptanceProbability[stage, trueMIBF], {stagelim, 1, 8}];
stage=1

Now a table is generated which displays our calculations. A rule is used to replace trueMTBF with the

upper-test MTBF in the cumulative acceptance probabilities stored in the list mycumacc:
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NumberForm [
TableForm[{N{timeValues, 4], N[mycumacc /. trueMTBF - 2 x 503, 4] },
TableDirections -> {Row, Column},
TableHeadings ~> {{"Time", "X Accept Pr."}, Automatic},
TableAlignments -> Center], {6, 5}]

Time Z Accept Pr.

1. 697. 0.

2. 1395. 0.2499
3. 2092. 0.42322
4. 2789. 0.54339
5. 3487. 0.62834
6. 4184. 0.68907
7. 4881. 0.73263
8. 5578. 0.76392

In order to calculate just the final cumulative acceptance probability, we can use OCfunction from the

previous section and employ a rule to replace trueMTBF with the upper-test MTBF.

OCfunction /. trueMTBF - 2 %« 503

298810949865435052465 N 17233046227251829
37315596221521295616 €2789/503 3091086499463328 €48681/1006
23887538000789 16613704547
6145301191776 €2092/503 © 6108649296 e3467/100€
3890655 1395 1
2024072 €2789/1006 © 7006 e1046/503 ' @1395/100€

+

+

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.7639210932754999180296

The producer risk equals one minus the acceptance probability when the true MTBF equals the upper-

test MTBF. The producer risk is then one minus the answer above:

1-%

0.2360789067245000819704
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= Cumulative Acceptance Probabilities for Each Stage When trueMTBF Equals the Lower-Test
MTBF
1t would be useful to generate a table of cumnulative acceptance probabilities for all eight stages when the
true MTBF equals the lower-test MTBF. The list mycumacc, which was generated in the previous
subsection, can be used for this purpose. A rule is used to replace trueMTBF with the lower-test MTBF

in the cumulative acceptance probability expressions stored in the list mycumacc:

NumberForm [
TableForm[ {N[timeValues, 4], N[mycumacc /. trueMTBF -» 503, 4]},
TableDirections -> {Row, Column},
TableHeadings -> {{"Time", "X Accept Pr."}, Automatic},
TableAlignments -> Center], {6, 5}]

Time 2 Accept Pr.

1. 697. 0.

2. 1395. 0.06245
3. 2092. 0.10578
4. 2789. 0.13583
5. 3487. 0.15705
6. 4184. 0.17223
7. 4881. 0.18313
8. 5578. 0.19095

In order to calculate just the final cumulative acceptance probability, we could use the OCfunction from

the previous section and use a rule to replace trueMTBF with the lower-test MTBF.

OCfunction /. trueMTBF - 503

298810949865435052465
583056190961270244 €5378/503

17233046227251829 . 23887538000789 .
96596453108229 e4881/503 384081324486 e4184/503
16613704547 3890655 1395 1

763581162 ©3487/503 T 506018 €2789/503 | 53 e2092/503 ' @1395/503

This is an exact result. A numerical approximation accurate to 22 decimal places is:
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N[%, 22]
0.1909520124005275184468

This is the consumer risk since the consumer risk is defined as the acceptance probability when the true

MTBF equals the lower-test MTBF.

Construct Function for Continuation Probability for a Quantity of Failures

In this step, we construct a function for calculating continuation probabilities for a quantity of failures

[Epstein, et al. 1963, equation 19]:

ContinuationProbability[stage Integer, failure Integer, trueMTBF ] :=
ACProbability[stage, failure, trueMTBF]

Construct and Use Function for Continuation Probability for Each Stage
In this step, we construct and use a function for calculating stage-by-stage continuation probabilities

[Epstein, et al. 1963, equation 21]:

ContinuationProbability[stage Integer, trueMTBF ] :=

r{stage] -1
ContinuationProbability[stage, failure, trueMTBF] /;

failure=a{stage]+1

a[stage] +1 < r[stage]

ContinuationProbability[stage Integer, trueMIBF ] :=
0 /; Not[a[stage] + 1 < r[stage]]

The continuation probability for stage zero with zero failures is, by definition, one:

ContinuationProbability[0, trueMTBF]

1

» Cumulative Continuation Probabilities for Each Stage When trueMTBF is Symbolic

The cumulative continuation probability for stage one when trueMTBF is left symbolic is:
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ContinuationProbability[l, trueMTBF]

485809 @-697/trueMTBF 697 -697/trueMTBF

~-697/trueMTBF
® + 5 +
2 trueMTBF trueMTBF

This is an exact symbolic result. An exact result for the case where trueMTBF is the lower-test MTBF is:

% /. trueMTBF - 503

1693009
506018 ©697/503

This is an exact result. An numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.8369462497111678019507

The cumulative continuation probability for stage eight when trueMTBF is symbolic is:

ContinuationProbability[8, trueMTBF]

This is obviously correct since the continuation probability at the last stage must be zero.

Cumulative Continuation Probabilities for Each Stage When trueM TBF Equals the Upper-Test
MTBF

The cuamulative continuation probability for stage one when trueMTBF equals the upper-test MTBF is:

ContinuationProbability[l, trueMTBF] /. trueMTBF - 2 %503

3912245
2024072 e697/1006

This is an exact result. An numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.9667233763202140309518

It would be useful to generate a list of cumulative continuation probabilities for all eight stages when the

true MTBF equals the upper-test MTBF. The parameter trueMTBF will be left symbolic in order to be
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consistent with up-front calculations. The desired list is generated but display of the output is tempo-

rarily suppressed.

mycumcon =
Table[ContinuationProbability[stage, trueMTBF], {stage, 1, 8}];

Now a table is generated which displays our calculations. A rule is used to replace trueMTBF with the
upper-test MTBF in the cumulative continuation probabilities stored in the list mycumcon. The cumula-

tive acceptance probabilities for this case are also provided for reference.

NumberForm [
TableForm[{N[timeValues, 4], N[mycumacc /. trueMTBF - 2 » 503, 4],
N[mycumcon /. trueMTBF - 2« 503, 4]},
TableDirections » {Row, Column}, TableHeadings ->
{{"Time", "E Accept Pr.", "I Continue Pr.”}, Automatic},
TableAlignments -> Center], {6, 5}]

Time X Accept Pr. X Continue Pr.

1. 697. 0. 0.96672
2. 1395. 0.2499 0.68401
3. 2092. 0.42322 0.48587
4. 2789. 0.54339 0.34754
5. 3487. 0.62834 0.2494
6. 4184. 0.68907 0.15185
7. 4881. 0.73263 0.06257
8. 5578. 0.76392 0.

» Cumulative Continuation Probabilities for Each Stage When trueM TBF Equals the Lower-Test
MTBF

The cumulative continuation probability for stage one when trueMTBF equals the lower-test MTBF is:

ContinuationProbability[1l, trueMTBF] /. trueMTBF - 503

1693009
506018 €697/503

This is an exact result. An numerical approximation accurate to 22 decimal places is:



ta

N[%, 22]

0.8369462497111678019507

1t would be useful to generate a table of cumulative continuation probabilities for all eight stages when
the true MTBF equals the lower-test MTBF. The list mycumcon, which was generated above, can be
used for this purpose. A rule is used to replace trueMTBF with the lower-test MTBF in the cumulative
continuation probability expressions stored in the list mycumcon. The cumulative acceptance probabili-

ties for this case are also provided for reference.

NumberForm[TableForm{ {N[timeValues, 4],
N[mycumacc /. trueMTBF - 503, 4], N[mycumcon /. trueMIBF -» 503, 4]},
TableDirections -» {Row, Column}, TableHeadings ->
{{"Time", "X Accept Pr.", "2 Continue Pr."}, Automatic},
TableAlignments -> Center}], {6, 5}]

Time X Accept Pr. 3 Continue Pr.

1. 697, 0. 0.83695
2. 1395. 0.06245 0.60771
3. 2092. 0.10578 0.43784
4. 2789. 0.13583 0.31508
5. 3487. 0.15705 0.22654
6. 4184. 0.17223 0.10829
7. 4881. 0.18313 0.03129
8. 5578. 0.19095 0.

Calculate Rejection Probability for Each Stage

In this step, we calculate stage-by-stage rejection probabilities using Epstein, et al. 1963, equation 22:

(ContinuationProbability[stage -1, trueMIBF] -
stage=1

ContinuationProbability[stage, trueMTBF] -
AcceptanceProbability[stage, trueMTBF])

= Cumulative Rejection Probabilities for Each Stage When trueMTBF is Symbolic

The cumulative rejection probability for stage one when rrueMTBF is left symbolic is:
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(ContinuationProbability[stage - 1, trueMTBF] -
stage=1
ContinuationProbability[stage, trueMTBF] -
AcceptanceProbability[stage, trueMTBF])

B e-697/trueMTBF B 485809 e—697/trueMTB}‘ 697 e—697/trueMTBF

1 -
2 trueMTBF”* trueMTBF

This is an exact, but partially symbolic result. An exact result can be obtained for a specific value of
trueMTBF such as the lower-test MTBF as follows:

% /. trueMTBF - 503

1693009
506018 e697/503

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.1630537502888321980493

Next, the cumulative rejection probability for stage eight when trueMTBF is symbolic will be generated.

This is one minus the operational-characteristic function.

rejfunction = Z (ContinuationProbability[stage - 1, trueMTBF] -
stage=1
ContinuationProbability[stage, trueMTBF] -
AcceptanceProbability[stage, trueMTBF])

e-1395/truemtsr _ 298810949865435052465 e”>378/trueMIbr
36 trueMTBF®
17233046227251829 e *881/trueMIBl 5388753800789 e4184/trueMsr

1~

3 trueMTBF® 6 t rueMTBF" -
16613704547 e-3487/trueMTEF B 3890655 e-2789/trueMTBF B 1395 e—2092/trueMTBF
6 trueMTBF® 2 trueMTBF’ trueMTBF

rejfunction provides the exact rejection probability as a function of true MTBF. This function can now be
plotted:
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Plot[rejfunction, {trueMTBF, 1, 3000}, GridLines - Automatic,
Frame -» True, FrameLabel - {"True MTBF, hours",
"Reject Prob.", "Exact-Analysis Curve" , None}];

Exact-Analysis Curve
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= Cumulative Rejection Probabilities for Each Stage When trueMTBF Equals the Upper-Test MTBF

It would be useful to generate a list of cumulative rejection probabilities for all eight stages when the
true MTBF equals the upper-test MTBF. The parameter trueMTBF will be left symbolic in order to be

consistent with up-front calculations. The desired list is generated but display of the output is tempo-

rarily suppressed.
stagelim
mycumrej = Table[ Z (ContinuationProbability[stage -1, trueMTBF] -
stage=1

ContinuationProbability[stage, trueMIBF] -
AcceptanceProbability[stage, trueMIBF]), {stagelim, 1, 8 }] ;

Now a table is generated which displays our calculations. A rule is used to replace trueMTBF with the
upper-test MTBF in the cumulative rejection probabilities stored in the list mycumrej. The cumulative

acceptance and continuation probabilities for this case are also provided for reference.
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utMTBFtable = NumberForm [
TableForm[{N[timeValues, 4], N[mycumacc /. trueMTBF - 2 « 503, 4],
N[mycumcon /. trueMTBF - 2 %« 503, 4],
N[mycumrej /. trueMTBF - 2 « 503, 4]},
TableDirections -> {Row, Column}, TableHeadings ->

{{"Time", "2 Accept Pr.", "X Continue Pr.", "E Reject Pr."},
Automatic}, TableAlignments -> Center], {6, 5}]

Time 2 Accept Pr. Z Continue Pr. I Reject Pr.

1. 697. 0. 0.96672 0.03328
2. 1395. 0.2499 0.68401 0.06609
3. 2092. 0.42322 0.48587 0.09091
4. 2789. 0.54339 0.34754 0.10908
5. 3487. 0.62834 0.2494 0.12227
6. 4184. 0.68907 0.15185 0.15908
7. 4881. 0.73263 0.06257 0.204¢8
8. 5578. 0.76392 0. 0.23608

Inspection of the table above reveals that each row sums to one as it must. The table of stage-by-stage
accept, continue and reject probabilities is a key test-design graphic, thus it was assigned as the value of

the symbol utMTBFtable so it could be readily inserted in Chapter 2.

In order to calculate just the final cumulative rejection probability, we can use rejfunction from the

previous section and employ a rule to replace trueMTBF with the upper-test MTBF.

rejfunction /. trueMTBF - 2 » 503

298810949865435052465 ~
37315596221521295616 €2789/503

17233046227251829 _ 23887538000789 ~
3091086499463328 €4861/1006 6145301191776 €2092/503
16613704547 3890655 1395 1

6108649296 €3487/1006 ~ 5024072 €2789/1006 ~ 1(00g €1046/503  @1395/1006
This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.2360789067245000819704
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This is the producer risk.

» Cumulative Rejection Probabilities for Each Stage When trueMTBF Equals the Lower-Test MTBF

1t would be useful to generate a table of rejection acceptance probabilities for all eight stages when the
true MTBF equals the lower-test MTBF. The list mycumrej, which was generated in the previous
subsection, can be used for this purpose. A rule is used to replace rueMTBF with the lower-test MTBF
in the cumulative rejection probability expressions stored in the list mycumrej. The cumulative accep-

tance and continuation probabilities for this case are also provided for reference.

1tMTBFtable = NumberForm [
TableForm[{N[timeValues, 4], N[mycumacc /. trueMTBF - 503, 4},
N[mycumcon /. trueMTBF -» 503, 4], N[mycumrej /. trueMTBF - 503, 4]},
TableDirections -> {Row, Column}, TableHeadings ->
{{"Time", "2 Accept Pr.", "2 Continue Pr.", "I Reject Pr."},
Automatic}, TableAlignments -> Center], {6, 5}]

Time Z Accept Pr. X Continue Pr. Z Reject Pr.

1. 697. 0. 0.83695 0.16305
2. 1395. 0.06245 0.60771 0.32984
3. 2092. 0.10578 0.43784 0.45638
4, 2789. 0.13583 0.31508 0.5491
5. 3487. 0.15705 0.22654 0.6164
6. 4184. 0.17223 0.10829 0.71948
7. 4881. 0.18313 0.03129 0.78559
8. 5578. 0.19095 0. 0.80905

Each row sums to one as it should. The table is assigned as the value of the symbol tMTBFtable so that
it can be easily inserted in Chapter 2.

In order to calculate just the final cumulative rejection probability, we could use the rejfunction

from the previous section and use a rule to replace trueMTBF with the lower-test MTBF.
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rejfunction /. trueMTBF - 503

298810949865435052465

! 583056190961270244 €5578/503
17233046227251829 2388753800078¢
96596453108229 e4881/503 384081324486 €4184/502
16613704547 3890655 1395 1
763581162 e3487/505 ~ 506018 €2/89/503 503 e2092/505 ~ "gl395/502

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

0.8090479875994724815532

The consumer risk equals one minus the rejection probability when the true MTBF equals the lower-test

MTBF. This is one minus the answer above:

1-%

0.1909520124005275184468

Calculate Expected Quantity of Failures and Test Time

We need to define a function for the probability that the test will terminate with an accept decision at a
specified number of failures [Epstein, et al. 1963, equation 33]. First the general case and then the

special case:

AccProbabilityF[failure Integer, trueMTBF ] :=
Module[{stage = 1}, While[failure > a[stage], stage++]; Which]
failure > Last[Last[accept]], 0, 0 s failure s Last[Last[accept]],
AcceptanceProbability[stage, failure, trueMTBF]]] /;
failure s a[Length{timeValues]]

AccProbabilityF([failure Integer, trueMTBF ] :=
0 /; failure > a[Length[timeValues]]

Now, we will define a function for the probability that the test will terminate with a reject decision at a

specified number of failures [Epstein, et al. 1963 equation 34]:
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RejProbabilityF[failure Integer, trueMTBF ] :=
Module[{rejectlist}, rejectlist =
Select[Table[{stage, r{stage]}, {stage, 1, Length[timeValues]}],
#[2] == failure &) /. {st_Integer, rej_Integer} - st;
Which[Length[rejectlist] == 0, 0, Length[rejectlist] > 0,

Sum[ (ContinuationProbability[stage -1, trueMTBF] -
ContinuationProbability[stage, trueMTBF] -
AcceptanceProbability[stage, trueMTBF]), ‘

{stage, First[rejectlist], Last[rejectlist]}]]]

w

The probability that the test will terminate with zero failures and a reject decision is:

RejProbabilityF[0, trueMTBF]

This is obviously correct since the first path to rejection is if three failures occur quickly. The probability

that the test will terminate with one or two failures and a reject decision must also be zero:

RejProbabilityF[l, trueMTBF]

RejProbabilityF[2, trueMTBF]

The probability that the test will terminate with three failures and a reject decision is:

RejProbabilityF[3, trueMTBF]

e—G97/trueMTBF 485809 e~697/trueMTBF 697 e-697/trueMTBF

2 trueMTBF? trueMTBF

1

If rrueMTBF is equal to the lower-test MTBF, we have:

% /. trueMTBF - 503

* 1693009
1- 506018 e697/503

This is an exact result. A numerical approximation accurate to 22 decimal places is:
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N[%, 22]

0.1630537502888321980493

Now, we will define a function for the probability that the test will terminate with a specified number of

failures [Epstein, et al. 1963 equation 35]:

TerminateProbability[failure Integer, trueMTBF ] :=
AccProbabilityF[failure, trueMTBF] + RejProbabilityF[failure, trueMTBF]

The probability that the test will terminate with zero failures in either acceptance or rejection is:

TerminateProbability[0, trueMTBF]

e—1395/trueMTBT

The probability that the test will terminate with between zero and seven failures is:

7
Z TerminateProbability([failure, trueMTBF]

failure=0

This result is obviously correct since it's not possible for the test to continue beyond the seventh failure.

Next, we will define a function for the expected termination failure quantity {Epstein, et al. 1963
equation 36]:

ExpectedTerminationFailure[trueMIBF ] :=
r{length[timeValues})
failure TerminateProbability[failure, trueMTBF]

failure=0

A function for the expected termination failure quantity with trueMTBF left symbolic is:
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expectedfailurefunction = ExpectedTerminationFailure[trueMTBF]

298810949865435052465 @~5578/trueMTBF
36 trueMTBF®
17233046227251829 e 4881/truekisr , 1730036199487099 ©-2789/trueMIBE

3 trueMTBF® 2 trueMTBF”
23887538000789 e *184/LrueMIBF  12201172226983 e 70/ CrueHTEY
6 trueMTBF? 6 trueMTBF!

16613704547 e-3487/trueMTBF 16613704547 e—2789/trueMTBF
+ +
6 trueMTBF" 6 trueMTBF"
298810949865435052465 e 578/trueMIBE  1730036199487099 e~2789/txueTEy
36 trueMTBF® 2 trueMTBF°
12291172226983 e-2789/trueMIBr , 7093185960133 @~2092/trueMIBE
6 trueMTBF* 12 trueMTBF*
16613704547 e-2789/trueMTBF 4239172471 e-2092/trueMTBF
+ _
6 trueMTBF> 3 trueMTBF>
3890655 e—2789/trueMTBF 3890655 e—2092/trueMTBF
> + +
2 trueMTBF? 2 trueMTBF?
17233046227251829 e-4881/txueMIBE 7793185960133 e 2092/trueMIBF
3 trueMTBF° 12 trueMTBF*
4239172471 e—2092/trueMTBF 1188048001 e»1395/trueMTBF
+ _
3 trueMTBF® 3 trueMTBF’
3890655 e»2092/trueMTBF 1946025 e-1395/trueMTBF
+ -
2 trueMTBF? 2 trueMTBF?
1395 e—-2092/t!‘ueMTBF .\ 1395 e—1395/trueMTBF .
trueMTBF trueMTBF

6 trueMTBF®
485809 e—697 /trueMIBF 697 e-697/trueMTBF ]

3 {1 _ o-697/trucutnr | 16613704547 e 407/ErucMIRY

2 trueMTBF? trueMTBF
-697/trueursr , 23887538000789 4184/ trueMIBE
6 trueMTBF?
1188048001 e—1395/trueMTBF 1946025 e—1395/trueMTBF
- +
3 trueMTBF® 2 trueMTBF?
485809 e—GQ'?/trueMTBF 1395 e—1395/trueMTBF 697 9-697/trueMTBF

_ e—13 95/trueMTBF

4 +

2 trueMTBF? trueMTBF tTueMTBF
3890655 e—2789/trueMTBP 1395 e-2092/trueMTBF

+
trueM’I‘BF2 trueMTBF

Now we can plot this function:
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expectedfailuresPlot = Plot [expectedfailurefunction,
{trueMTBF, 1, 3000}, GridlLines - Automatic,
Frame -» True, FrameLabel - {"True MTBF, hours",
"Exp. Failure Quantity", "Exact-Analysis Curve" , None}];

Exact-Analysis Curve
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The plot above, since it is a key test-design graphic, is assigned as the value of the symbol expectedfail-
uresPlot so that it can be easily inserted in Chapter 2.

In order to calculate the expected failure quantity for a true MTBF equal to the lower-test MTBF, we

could use expectedfailurefunction and a rule to replace trueMTBF with this value:
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expectedfailurefunction /. trueMTBF - 503

7 (_ 298810949865435052465 _
583056190961270244 e3°78/503

17233046227251829 23887538000789 B
06596453108220 e4661/503 ~ 384081324486 €4184/503
16613704547 15575985002365669
763581162 €3467/508 193192906216453e2m9ﬁ°3)
( 298810949865435052465 8530700217643112 .
583056190961270244 €5578/503  96596453108229 €2783/503
7176208452385 )
256054216324 2092/503
( 17233046227251829 7886338933045 . 7430333057 ) .\
06596453108229 €4881/503 ~ 256054216324 €2092/503 © 763581162 e1395/503
3 (1+‘ 16613704547 _ 1693009 )
763581162 €3487/503 506018 €697/503
. ( 23887538000789 _ 8193914219 . 1693009 )
384081324486 €4184/503 ~ 763581162 €1395/503 © 506018 €697/503
3890655 1395

353009 ©2789/503 © 503 @2092/503

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

4.494209576902633303992

In order to calculate the expected failure quantity for a true MTBF equal to the upper-test MTBF, we

could use expectedfailurefunction and a rule to replace trueMTBF with this value.

expectedfailurefunction /. trueMTBF - 2 % 503

(_ 298810949865435052465 _
37315596221521295616 €2789/503
17233046227251829 23887538000789
3091086499463328 €4661/1006 6145301191776 €2092/503
16613704547 . 11456231651244629 )+
6108649296 e3487/1006 ° 2060724332975552 €2783/1006
6 ( 298810949865435052465 ~ 15417339472366109
37315596221521295616 €2789/503  2060724332975552 2789/1006

47776513524917 ) 5( 17233046227251829 B
12290602383552 €1046/503 3091086499463328 e4681/100¢

64819645060757 . 4179985193 ) .
12290602383552 €1046/503 * 1527162324 e1395/1006
3(1+ 16613704547 _ 3912245 )+
6108649296 €3487/1006 2024072 €697/1006
s ( 23887538000789 ~ 5707147517 . 3912245 )+
6145301191776 €2092/503 1527162324 e1395/1006 ~ 2024072 e697/1006
3890655 1395

1012036 ©2789/1006 * 1006 ©1046/503
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This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

2.670180049154001070836

Next, we will define a function for the expected test time [Epstein, et al. 1963 equation 41]:

ExpectedTestTime[trueMTBF ] :=
trueMTBF ExpectedTerminationFailure[ trueMTBF]

A function for the expected test time with trueMTBF left symbolic is:
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expectedtesttimefunction = ExpectedTestTime[trueMIBF]

(7 (_ 298810949865435052465 e5578/truetIsF
36 trueMTBF®
17233046227251829 e **%1/trueMI®r - 1730036199487099 2789/ trueMIBE

3 trueMTBF° 2 trueMTBF®
23887538000789 e 1184/trueMIBE  15591172226983 2789/ txueMIBE
6 trueMTBF" ¥ 6 trueMTBF! B
16613704547 e-3487/trueMTBF 16613704547 e—2789/trueMTBF
6 trueMTBF’ ¥ 6 trueMTBF’ *
298810949865435052465 e 5578/trueMIBl  1730036199487099 e-2789/trueHTEr
36 trueMTBF® 2 trueMTBF® -
12291172226983 e 278%/trueMIBE 7093185960133 @ 2092/trueMIBF
6 trueMTBF" ¥ 12 trueMTBF" B
16613704547 e-2789/trueMTBF 4239172471 e—2092/trueMTBF
6 trueMTBF ¥ 3 trueMTBF’ -
3890655 e-2789/trueMTBF 3890655 e—2092/trueM’rBF
2 trueMTBF? ¥ 2 trueMTBF* ¥
17233046227251829 e 4881/trueMIBE 7093785960133 e-2092/trueMIar
3 trueMTBF® 12 trueMTBF" -
4239172471 e-2092/trueM‘I‘BF 1188048001 e-lB_QS/trueMTBF
3 trueMTBF® * 3 trueMTBF" )
3890655 e-2092/trueMTBF 1946025 e-1395/trueMTBF
2 trueMTBF’ * 2 trueMTBF?
1395 e-2092/trueMTBF . 1395 e—1395/trueMTBF )
trueMTBF trueMTBF

~ e—697/trueMTBF . 16613704547 e—3487/trueMTBF

6 trueMTBF>
485809 e—697/trueMTBF 697 e—697/trueMTBF )

3(1

2 trueMTBF* trueMTBF
4 (_e-1395/trueMTBF + @-697/trueMTBE | 23887538000789 e-4184/trueMIBF
6 trueMTBF*
1188048001 e—lBQS/trueMTBF 1946025 e—1395/trueMTBF
- = +
3 trueMTBF> 2 trueMTBF?
485809 e~697/trueM’I‘BF 1395 e—l395/trueM’1’BF 697 e-697/truemgp

2 trueMTBF? trueMTBF trueMTBF

3890655 e—2789/trueMTBF 1395 e—2092/trueMTBF
+ trueMTBF

trueMTBF? trueMTBF

Now we can plot this function:
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expectedtesttimePlot = Plot [expectedtesttimefunction,
{trueMTBF, 1, 3000}, GridLines - Automatic,
Frame - True, Framelabel -» {"True MTBF, hours",
"Exp. Test Time, hours", "Exact-Analysis Curve" , None}];

Exact-Rnalysis Curve
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The plot above, also a key test-design graphic, is assigned as the value of the symbol expectedtesttime-
Plot so that it can be easily inserted in Chapter 2.

In order to calculate the expected test time for a true MTBF equal to the lower-test MTBF, we could use

expectediesttimefunction and a rule to replace trueMTBF with this value.

expectedtesttimefunction /. trueMTBF - 503

298810949865435052465
" 583056190961270244 €5578/503
17233046227251829 23887538000789
96596453108229 €4881/503 ~ 334081324486 €4184/503
16613704547 . 15575985002365669 )
763581162 €3487/503 © '193192906216458 €2789/503
( 298810949865435052465 8530700217643112

503 (7 (

583056190961270244 €5579/505 _ 96596453108220 €2789/505
7176208452385 ) 5 ( 17233046227251829
256054216324 €2092/503 96596453108229 €4881/503

7886338933045 . 7430333057 )
256054216324 €2092/503 763581162 €1395/503
3 (1+ 16613704547 B 1693009 )
763581162 €3487/503 506018 €697/503
( 23887538000789 _ 8193914219 . 1693009 )
384081324486 €4184/503 763581162 €1395/503 506018 €697/503
3890655 1395
353009 e2789/503 ' 503 @2092/503 )
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This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

2260.587417182024551908

In order to calculate the expected test time for a true MTBF equal to the upper-test MTBF, we could use

expectediesttimefunction and a rule to replace trueMTBF with this value.

éxpectedtesttimefunction /. trueMTBF - 2 * 503

B 298810949865435052465
37315596221521295616 €2789/503
17233046227251829 _ 23887538000789 _
3091086499463328 488171006 6145301191776 €2092/503
16613704547 . 11456231651244629 ) R
6108649296 €3487/1006 2060724332975552 2789/1006
6 ( 298810949865435052465 B 15417339472366109
37315596221521295616 €2789/503 2060724332975552 e2789/1006
47776513524917 17233046227251829
12290602383552 €1046/503 ) > ( 3091086499463328 e4881/100¢ ~

1006 (7 (

64819645060757 . 4179985193 ) .
12290602383552 @1046/503 * 1527162324 €1395/1006
3 ( . 16613704547 _ 3912245 ) .
6108649296 €3467/1006 ~ (24072 €69//1006
. ( 23887538000789 ) 5707147517 . 3912245 ) .
6145301191776 €2092/503 ~ 1527162324 e1395/1006 ~ 2024072 €697/1006
3890655 1395
1012036 €278571006 © 1006 e1046/503 )

This is an exact result. A numerical approximation accurate to 22 decimal places is:

N[%, 22]

2686.201129448925077261
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Summary & Conclusions

An analysis of the exact stage-by-stage acceptance, continuation and rejection probabilities (including
the impact of truncation) resulting from a sequence of reliability test plan decision rules was performed.
An exact operational-characteristic function was obtained and plotted. Exact functions for expected

failure quantity and test time were obtained and plotted as well.
The risks calculated in this appendix are consistent with the 20% consumer- and producer-risk goals

stated by the test planners. The actual consumer and producer risks, respectively, are 19.1 and 23.6%.

The exact-analysis results are consistent with the simulation documented in chapter 2.
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Appendix B

Simulation Supplement to Chapter 3
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3

Appendix B

Simulation Supplement to Chapter 3

Introduction

This notebook is a simulation supplement to the exact analysis contained in Chapter 3. In this notebook,
the following sequence of decision rules will be simulated in order to determine their properties when 6
is assumed to be equal to the lower-test value of 1,480 hours. Of particular interest is to determine

whether the acceptance probability exceeds the 20% consumer-risk requirement.
The sequence of decision rules to be simulated is:

m accept at 2,382 hours if 0 failures have occurred,

» accept at 4,432 hours if 1 failure has occurred.

m accept at 6,333 hours if 2 failures have occurred.

= accept at 8,162 hours if 3 failures have occurred,

= accept at 9,947 hours if 4 failures have occurred,

» accept at 11,701 hours if 5 failures have occurred and

m reject if 6 failures occur before 11,701 hours are accumulated.

Simulation Preparation

In this section, we'll structure the decision rules so that they can be conveniently used in a simulation in

the next section. First, we'll define the accept times for each potential failure quantity:
accept[f /; f ==0] =2382

2382

accept[f /; f==1] = 4432

4432



accept[f /; £ ==2] = 6333

6333

accept[f_/; f == 3] = 8162

8162

accept[f /; £ ==4] = 9947

9847

accept[f /; £==5] =11701

11701

Next. we'll define the reject times for each potential failure quantity:

reject[f_/; £ == 6] = 11701

11701

Simulations

In this section. simulations are performed on the decision rules developed for this test plan using a true 6
value of 1,480 hours. Approximate consumer risks are obtained as are approximations for the expected

test time and failure quantity.
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w Simulation Description

Before the simulation starts, an empty list is assigned as the value of acceptlist and rejectlist thereby

initializing these lists.

During the simulation, the following steps are performed for each exponential-sequential trial:

» The within-test failure counter i is initially assigned the value 1.

= The first pseudo-random failure time is generated and assigned as the initial value of #f.

= While it's not the case that 77/ meets or exceeds the accept rule for the i - 1 failure or ##fis less than or
equal to the reject rule for the ith failure, then an additional pseudo-random failure time is added to 7f
and i is incremented by 1.

» The While loop stops when the condition above no longer holds. Test termination has occurred.

» If the test terminated in acceptance, then the termination failure quantity is i - 1 and the termination
time is the i - 1 accept time. This pair of values is appended to acceptlist.

= If the test terminated in rejection, then the termination failure quantity is i and the termination time is

1tf. This pair of values is appended to rejectlist.

After the simulation ends, acceptlist contains the final failure quantity and test time of each simulated
exponential-sequential test that ended in an accept decision. rejectlist contains the final failure quantity
and test time of each simulated test that ended in a reject decision. If the true 6 was assumed equal to the
lower-test 6, the consumer risk is calculated as the fraction of tests that ended in acceptance. If the true 6
was assumed equal to the upper-test 8, the producer risk is calculated as the fraction of tests that ended
in rejection. The average quantity of failures is calculated by summing the quantity of failures that
occurred during the simulation and dividing by the quantity of trials. The average test time is calculated
by summing the termination times that occurred during the simulation and dividing by the quantity of
trials.

The simulation function is defined next:

simulation[trueTheta , trials_, prec ] :=
Do[i=1; ttf = -trueTheta*» Log[Random[Real, {0, 1}, prec]]:;
While[Not[ (ttf 2 accept[i - 1]) V TrueQ[ttf < reject[il]],
ttf = ttf + -trueTheta x Log[Random[Real, {0, 1}, prec]]; i++];
If[ttf 2 accept[i - 1], acceptlist = {acceptlist, {i-1, accept[i-1]}},
Null, Null];
If[ttf s reject[i], rejectlist = {rejectlist, {i, ttf}}, Null, Null],
{trials}]




It should be noted that a different approach to exponential sequential simulation is taken in Chapter 2.
The approach there is more efficient in terms of execution time and memory usage, thus it permits one
to perform larger simulations. The approach taken here is easier to setup and saves more simulation

data at the expense of additional execution time and memory.

It should also be noted that the function in the standard add-on package Statistics Continuous -
Distributions’ for generating machine-precision, psecudorandom numbers from the exponential
distribution is not used in this appendix. Instead, arbitrary-precision pseudorandom numbers are gener-
ated in order to obtain highlv-accurate results as recommended by McCullough (2000). Machine-

precision pseundorandom number generation is illustrated in Chapter 2.

First Simulation

In this and the next three subsections, four simulations are performed assuming that the true 6 equals
1,480 hours.

Start an empty list for accept decisions.

acceptlist = {}

{3
Start an empty list for reject decisions.

rejectlist = {}

{}

Run the simulation with A = %= —]718—0— for 100,000 trials using 30-digit pseudorandom number

generation:

simulation[1480, 100000, 30]

Clean up the extra braces in acceptliist:

Short[acceptlist = Partition[Flatten[acceptlist], 2], 10]

<<1>>

Clean up the extra braces in rejectlist:
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Short[rejectlist = Partition[Flatten[rejectlist], 2], 10]

{{6, 8537.69800687837419363744723035},
{6, 5831.50636013128589753836751135},
{6, 8739.07156713021255510916582548},
{6, 1559.22505886098966165718481491},
{6, 5851.15605192525127001761852342},
<«58912>>, {6, 5068.29563539870014048753917524},
{6, 10993.24289103998388702813974853},
{6, 6473.40224673736399544755268559),
{6, 6457.82157476877450541070947341}}

Calculate the acceptance probability. Since the true 6 was assumed equal to the lower-test 6 of 1480

hours, this is the consumer risk:

Length[acceptlist]
conriskl =
Length[acceptlist] + Length[rejectlist]
41079
100000

A machine-precision result is:

% //N

0.41079

Calculate the average number of failures:

avgfaill = Apply[Plus, Transpose[Join[acceptlist, rejectlist]] [1]] /
(Length[acceptlist] + Length[rejectlist])

402349
100000

A machine-precision result is:

%//N

4.02349

Calculate the average test time:



avgtimel = Apply[Plus, Transpose[Join[acceptlist, rejectlist]][2]] /
(Length[acceptlist] + Length[rejectlist])

5947.2425052109729460322195137¢

» Second Simulation

Start an empty list for accept decisions.

acceptlist = {}

{1
Start an empty list for reject decisions.

rejectlist = {}
{1

_ 1

Run the simulation with A = % Jagg for 100.000 trials using 30-digit pseudorandom number

generation:

simulation[1480, 100000, 30]

Clean up the extra braces in acceptlist:

Short[acceptlist = Partition [Flatten[acceptlist], 2], 10]

<«<l>>
Clean up the extra braces in rejectlist:

Short[rejectlist = Partition[Flatten[rejectlist], 2], 10]

{{6, 5162.60719670216594857814330874},

{6, 7015.31813030520066570126135719},

{6, 7778.81698391397922605050399099},

{6, 10930.88176054092107978535274730},

{6, 4431.47585232674589567211917186},

<<58888>>, {6, 9027.41326938859144830674926850},
{6, 4820.79292001755882006361727748},

{6, 3265.81785620505039178932445653},

{6, 7177.46298832216439907866782325))
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Calculate the acceptance probability. Since the true € was assumed equal to the lower-test  of 1480
R hours. this is the consumer risk:

~ Length[acceptlist]
Length[acceptlist] + Length[rejectlist]

v conrisk2 =

41103
100000

A machine-precision result is:

$//N

0.41103
Calculate the average number of failures:

avgfail2 = Apply[Plus, Transpose [Join[acceptlist, rejectlist] 1111/
(Length[acceptlist] + Length [rejectlist])

201261
50000

A machine-precision result is:

$//N

4.02522
Calculate the average test time:

avgtime2 = Apply[Plus, Transpose[Join [acceptlist, rejectlist]][2]] /
(Length[acceptlist] + Length [rejectlist])

5951.34690133309716840900501972

N m Third Simulation

Start an empty list for accept decisions.

acceptlist = {}

{3



Start an empty list for reject decisions.

rejectlist = {}
{}

Run the simulation with A = —’5= —];‘18—0 for 100.000 trials wsing 30-digit pseudorandom number

generation:

simulation[1480, 100000, 30]

Clean up the extra braces in acceptlist:

Short[acceptlist = Partition[Flatten[acceptlist], 2], 10}

{{3, 8162}, {0, 2382}, {5, 11701}, {5, 11701}, {2, 6333}, (0, 2382},
{5, 11701}, {0, 2382}, {3, 8162}, {0, 2382}, {1, 4432}, {0, 2382,
{4, 9947}, {0, 2382}, {0, 2382}, {5, 11701}, {0, 2382}, {1, 4432},
{0, 2382}, {0, 2382}, {0, 2382), {1, 4432}, {1, 4432}, {0, 2382},
{0, 2382), {0, 2382}, {0, 2382}, {1, 4432}, {5, 11701}, {0, 2382},
<«<41033>, {0, 2382}, {0, 2382), {2, €333}, {0, 2382}, {3, 8162},
{1, 4432}, {0, 2382}, {0, 2382}, {2, 6333}, {2, 6333}, {2, 6333},
{2, €333}, {1, 4432}, {3, 8162}, {0, 2382}, {0, 2382}, {1, 4432},
{0, 2382}, {0, 2382}, {1, 4432}, {0, 2382}, {0, 2382}, {1, 4432},
{1, 4432}, {4, 9947}, {0, 2382}, {2, 6333), {1, 4432}, {1, 4432})

Clean up the extra braces in rejectlist:

Short[rejectlist = Partition[Flatten[rejectlist], 2], 10)

{{6, 4989.93443791169813927095470199},

{6, 9183.66085780104649793699554344},

{6, 7123.75822296922105532263911550},

{6, 5470.74752829537519826036407409},

{6, 8308.09288161297634725094340221},

<«<5889%9>>, {6, 5624.09504810958894651445883619},
{6, 6681.59087905510638457726550302},

{6, 9874.16045391830694099308355778},

{6, 11139.33039233748814435876856077} )

Calculate the acceptance probability. Since the true 6 was assumed equal to the lower-test 8 of 1480

hours, this is the consumer risk:



Length[acceptlist]
conrisk3 =

Length[acceptlist] + Length[rejectlist]

2]

10273
25000

A machine-precision result is:

$//N

0.41092

Calculate the average number of failures:

avgfail3 = Apply[Plus, Transpose [Join[acceptlist, rejectlist]] [11]/
(Length[acceptlist] + Length[rejectlist])

403253
100000

A machine-precision result is:

$//N

4.03253

Calculate the average test time:

avgtime3 = Apply[Plus, Transpose[Join [acceptlist, rejectlist]][2]] /
(Length[acceptlist] + Length [rejectlist])

5966.74503564488486299858266826

» Fourth Simulation

Start an empty list for accept decisions.

acceptlist = {}

. {3

Start an empty list for reject decisions.



rejectlist = {}
{)

Run the simulation with 1 = §= 7 for 100.000 trials using 30-digit pseudorandom number

generation:

simulation[1480, 100000, 30]

Clean up the extra braces in acceptlist:

Short[acceptlist = Partition[Flatten[acceptlist], 2], 10]

<<1>>

Clcan up the extra braces in rejectlist:

Short[rejectlist = Partition[Flatten[rejectlist], 2], 10]

{{6, 8926.08352364327643191597133723},

{6, 9523.05054518911528036632730384},

{6, 4934.00253410276477355948947100},

{6, 5257.43660580122580093609253988},

{6, 7821.80050896919997891679184687},

<«<58642>>, {6, 6491.44002345079453726472144300},
{6, 6577.75308534811470059153659672},

{6, 6468.04634771090018997591283277},

{6, 9335.30224483235148240318828980} }

Calculate the acceptance probability. Since the true 8 was assumed equal to the lower-test 8 of 1480

hours, this is the consumer risk:

Length[acceptlist]}
conrisk4 =
Length[acceptlist]-rLength[rejectlist]
41349
100000

A machine-precision result is:

$//N

0.41349



Calculate the average number of failures:

avgfail4 = Apply[Plus, Transpose[Join[acceptlist, rejectlist]] [1]] /
(Length[acceptlist] + Length[rejectlist])

50133
12500

A machine-precision result is:

$//N

4.01064

Calculate the average test time:

avgtime4 = Apply[Plus, Transpose[Join[acceptlist, rejectlist]][2]] /
(Length[acceptlist] + Length[rejectlist])

5936.23414113906857920294835131

s Combined Results from True 6 Equals 1,480 Hours Simulations
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